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Abstract

Neural machine translation (NMT) has been a cornerstone in the development of large

language models, which have recently gained significant attention in the domain of artificial

intelligence. This thesis explores the effectiveness of pivot-based approaches in low-resource

NMT scenarios, with a focus on the French-German language pair using English as a

pivot language. We investigate the relationship between the amount of pivot resources

and translation quality, utilizing the transformer architecture and the ONMT-Library. Our

experiment demonstrates that increasing the size of source-pivot and pivot-target corpora

consistently improves translation quality. The best-performing pivot model, trained on

400,000 pivot sentences, showed substantial improvements over the baseline model, with

increases of 15.4% in BLEU, 5.8% in chrF, and −4.7% in TER scores. Notably, this model

achieved 70− 80% of the upper-bound model’s performance while in comparison using only

1% of direct source-target sentence pairs and 4% of additional pivot sentence pairs. Visual

analysis of the training process revealed stable learning dynamics, with some anomalies in

validation accuracy and early stopping mechanisms. The results suggest a clear relation

between pivot resource availability and translation quality, with a saturation point emerging

as the pivot corpus size increases. Additionally, we observed a performance gap between

in-domain and out-of-domain test sets, highlighting the importance of both, domain-specific

data in achieving optimal translation results and addressing robustness between in-domain

and out-of-domain testing scenarios. This research contributes to the growing body of

knowledge on low-resource NMT and provides insights into the efficient use of pivot strategies.

The findings hold significance for future studies in NMT and the extensive domain of large

language models, providing a fundamental basis for comprehending the core principles of

these sophisticated A.I. systems.

Keywords: Neural Machine Translation, Machine Translation, Low-Resource Languages,

Pivot-Based Translation, Transformer Architecture, OpenNMT-Library, French-German

Translation, English Pivot Language, Large Language Models, Artificial Neural Networks
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1 Introduction

LLaMA - The Impact Of A Leak On the 24th of February 2023 Meta (formerly Facebook)

released its latest LLaMA1 foundational 65-billion-parameter large language model. Like

other large language models, LLaMA works by taking a sequence of words as input and

predicting the next word to generate text, recursively. The model whose architecture is

based on artificial neural networks, introduced in Section 3.1, had previously been trained

on 1.4 trillion tokens 2. The calculation of the model parameters, an optimization approach

originating in machine learning which we introduce in Section 3.1.3, was carried out on

approximately 2000 GPUs (Nvidia A100) and took 21 days, which, at a data center renting

price tag of around $4 per hour, cost approximately $4 million 3. The release of LLaMA

occured in response to OpenAI’s ChatGPT, which was released to the public three months

earlier in November 2022, putting pressure on major technology companies such as Google

and Meta in the race for market dominance in the ”Artificial Intelligence (AI) sector” 4. Due

to the high upfront research and development investment, companies have corresponding

financial interests. By granting access to Application Programming Interfaces (APIs) for

developers or subscription-based web services accessed through a user interface, companies

financially leverage the power of their ”AI” models and computational resources. Thus,

even with Meta’s prior notion and intention of supporting the Open Source community by

publishing all kind of advances in the language model and ”A.I” domain research, only the

source code and model architecture, the transformer architecture which we are introducing

in Section 3.2.3, but not the trained weights, i.e., the trained coefficients, for the model

are published to the Open Source community by Meta. Without a comparable amount of

computational and financial resources, open-sourcing the blueprints for their advances has

limited impact. Yet, only a week after LLaMA’s release, its weights were disclosed without

authorization (i.e., leaked) on 4chan5, the Internet’s most trafficked imageboard known for

its influential yet controversial role in internet culture. It is still up for debate whether Meta

strategically published their weights to generate a user and developer platform surrounding

its model’s architecture, whether publishing the weights was an accident, or whether it was

done intentionally but unauthorized by an individual. A month later a supposedly also

1acronym: Large Language Model Meta AI
2a token, i.e., in the domain of language processing the basic unit of text a model processes
3https://cloud.google.com/products/calculator/
4the quotation marks around ”AI” indicate skepticism by the author towards the designation of the term

by the mathematics and computer science domain as the ”AI” term is blurry, of philosophical nature, and
not defined but yet far spread and common in practice

5https://4chan.org/

https://4chan.org/
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leaked internal document (Patel, 2023) by a Google employee titled ”We Have No Moat, And

Neither Does OpenAI” describes the timeline of these events and what follows after:

”From this point forward, innovations come hard and fast. (a week later) Language

models on a Toaster. (another week later) Fine Tuning on a Laptop (...) within

hours on a single RTX 4090.” (Patel, 2023, March 3rd-13th, 2023)

Patel continues to describe how the leak has and will forever have changed the language

model field of research as a whole, now that the costs for training compatible large language

models are no more than a few hundred dollars instead of a few million. The saved resources

by not having to estimate and train coefficients for a large foundational model but using

the previously trained (abbr.: pre-trained) LLaMA and its existing coefficients for specific

experiments from within the research and Open Source community amounts to that much.

All kinds of research and experiments can now be undertaken by the many and not only

by a few big, private corporations, e.g., fine-tuning the pre-trained foundational model on

domain specific data while exploring efficient fine-tuning strategies. Within just 10 days

after the leak, the University of Stanford published Alpaca, an instruction understanding

and answering model, and more importantly, a framework for further development and

experimentation, significantly impacting the Open Source community (Taori & Gulrajani,

2023). The academic and public interest is high and ever rising, as indicated in Figure 1. The

previous developments, which are highlighted by giving a general and historical insight to

the Machine Translation domain in Chapter 2, in the field already spark the interest of many

researchers in the field. As Figure 1 shows, the number of papers published on arxiv.org6 from

year 2000 to 2023-06 having one of the keywords ”LLM, Large Language Model, Transformer,

Neural Machine Translation, Encoder-Decoder” in their title only indicate the currently

ongoing hype surrounding large language models.

Relevance of Large Language Model Technology What is a language model, a large

one at that, and where did the term suddenly come from? What is the hype all about?

Research conducted by UBS7, a systemically important multinational investment bank,

dubbed ChatGPT the ”fastest Growing App In The History Of Web Applications” (Gordon,

2023), reaching 100 million users within the first two months of its public release, showing

the relevance of language model technology to the general public and the corresponding

financial potential for corporations. The conversational bot ChatGPT produces human-like

6arxiv.org
7UBS is not/no longer considered an acronym and does not stand for Union Bank of Switzerland but

became a designation

arxiv.org
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Figure 1: Number of Publications in specific Computer Science and Natural Language
Processing topics from 2000 to 2023-06, Source: crawled from arxiv.org

text, including answering questions, writing short stories, composing music, solving math

problems, performing basic computer coding, and translating languages. The quality of these

artificially generated information is of such level that extensive debates now question points

of contention, the fear, and the potential regarding the substitution of human workers with

”AI” and its consequences for society. There have been numerous hype cycles in the artificial

intelligence domain in the past, and the hype around language model technology undoubtedly

shares similarities. However, the implications of finding a universal signal-approximating

model for language are utopian. Are we on track to solve this matter with artificial neural

networks, which we provide both an intuitive introduction to in Section 3.1 and a more

rigor introduction in Section 3.1.3, the transformer architecture introduced in Section 3.2.3,

and large language models? In a race for artificial general intelligence (AGI), Big Tech

corporations compete in bringing forth the most powerful foundation model. The term AGI

refers to the kind of intelligent behaviour that matches or surpasses human capabilities across

a wide range of cognitive tasks. In the context of language models, a foundation model is

believed to be a solid basis for representing the collective human text-based knowledge upon

which AGI is (potentially) built. In the context of language models, to create a foundation

model, learning algorithms produce specific coefficients based on digitized or digital books,

texts, and other textual content from the internet, such as web pages and blogs. These

coefficients are components of specific artificial neural networks. Equipped with these specific
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coefficients, the neural network’s task is to approximate the representation of collective human

text-based knowledge ”at the touch of a button” and even to evolve beyond reproducing

learned representations by finding novel insights within the vast encoded space of knowledge,

e.g., by discovering and interpolating new connections between thought streams or scientific

domains. As the amount and quality of data increase, along with computational resources, the

foundation models improve 8 — consequently improving the quality and impact of applications

such as ChatGPT. But language is not the only domain where artificial neural networks

and learning representations of some knowledge are on the rise. In micro-biology, a recently

published model by Google DeepMind called ”AlphaFold3” opens new research horizons,

accurately predicting the structure of proteins, DNA, RNA, ligands and beyond proteins to a

broad spectrum of biomolecules, and how they interact. Based on these predictions researchers

hope to transform their understanding of the biological world and drug discovery, including

the high financial potential in combination with societal prosperity. Earlier iterations of the

AlphaFold model (AlphaFold and AlphaFold2) and research have already been cited more

than 20,000 times (Google DeepMind AlphaFold team, 2024), and their scientific impact has

been recognized through numerous awards. Many of the techniques and components used in

the neural network architectures for applications such as ChatGPT and AlphaFold3 are based

on findings originating from neural machine translation. The historical development of neural

machine translation is highlighted in Chapter 2, while the concept of translation is discussed

in Section 3.2.1. GPT is an acronym for Generative Pre-trained Transformer, indicating

several key technologies that ChatGPT is composed of. The notion of finding a specific,

trainable task to obtain a general-purpose representation, which serves as a starting point

for various related subsequent tasks (downstream tasks), is called pre-training. The concept

of training artificial neural networks and the meaning of a trainable task are introduced in

Section 3.1.3. The Transformer is a recently developed neural network architecture component

that efficiently produces information-dense, high-quality representations. This innovation has

significantly impacted the rapid progression of machine learning and artificial intelligence.

But what do these concepts have to do with low-resource machine translation scenarios, i.e.,

translation scenarios in which there exists a scarcity of (parallel) source and target language

data? In the context of language, when we attempt to approximate a plausible target

sequence based on a source sequence, we call this process translation. The ability to translate

between languages, e.g., reduces global and intercultural boundaries, enabling interaction that

foster understanding, collaboration, and communication among diverse communities while

8Philosophical and controversial. Trends indicate a saturation and upper performance limit for LLMs.
However, visionaries and evangelists believe in the potential to overcome these saturation effects.
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preserving intercultural lingual and linguistic differences. This alone is a valid motivation to

improve existing translation solutions for smaller languages. Moreover, much of the impact

of applications such as ChatGPT is limited by one’s ability to express and understand the

language in which the majority of collective human knowledge is stored. Both culturally

and linguistically underrepresented facts and languages may get lost or not fully represented

within the general representation compared to more strongly represented languages, such

as English. Tackling the low-resource situation and improving translation models can not

only provide a bilateral bridge between cultures and their potentially small languages but

also grant access to collective knowledge for people belonging to those cultures, as well as

offer the possibility to enrich the collective knowledge with translated knowledge from within

those smaller languages. Regional folklore, customs, fairy tales, lyrics, and songs are among

the types of knowledge that are potentially not even written down and hence completely

hidden from the collective written knowledge. By making translation more accessible and

versatile for smaller languages, we can counteract the loss of knowledge by providing means

to preserve and document information originating from smaller language communities. In

text generation we try to find the most plausible next token based on a source sequence and

auto-regressively repeat that prediction based on the source sequence including the already

predicted plausible next token. The text generation task with Transformers is closely related

to text translation, and comprehension of one leads to understanding of the other, as we will

see in Section 3.2.

From the Age of Retrieval to the Age of Generation Upon closer examination, we

can expand the concept of translation between natural languages to the domain of computer

science, with human language as one part and computer instructions as the other part of the

language pairing. In our modern world, computers are ubiquitous, from personal computers

in offices and cellphones in our pockets to cash register systems in supermarkets. The ability

to communicate with and understand the language of computers distinguishes individuals

with a background in computer science-related fields from others. Could it become reality

for anyone without a background in computer science to give instructions to computers

using natural language? What are the implications if harnessing the power of computation

and the seemingly magical capabilities of computers for mundane tasks no longer requires

extensive education in computer science-related fields? To what level of productivity will

civilization rise, and how will fields of research beyond computer science thrive once scientists

and innovators can command computers with ease using natural language? Recently, on June

3, 2024, at COMPUTEX, the Taipei International Information Technology Show, Jensen

Huang, CEO of Nvidia, declared a new industrial revolution following the age of data and
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information — one focused on generation rather than retrieval (NVIDIA, 2024). This new

era is characterized by instructing computers to generate information rather than merely

retrieving it. Instead of needing to learn another language, we simply instruct the computer

to generate what we want to say in another language for us, empowering us to communicate

with whomever we want wherever we are. These generative systems are data-hungry and

require vast amounts of resources. Improvements in the domain of low-resource machine

translation, which this thesis’ experiment explores in Chapter 4, can potentially be adapted

in non-low-resource scenarios, where the investigated exploits lead to even bigger amounts of

data and even denser representations, hence a even stronger representation of our collective

knowledge which consequently may lead to even better performing systems.

Outline - Unveiling Large Language Models through Neural Machine Translation

The domain of language model technology has its roots in machine translation. This master’s

thesis provides insight into the field of large language models and demonstrates how a third

pivot9 language (English) can be used to improve translation results in a low-resource scenario,

using the French-German language pair as an example. First, we explore the history of

the field in Chapter 2. At the end of Chapter 2, we explore various research directions

and approaches in the domain of low-resource machine translation, e.g., the so-called pivot

strategy which is utilized in the thesis experiment. The pivot strategy exploits a situation

where there are more resources between the source and pivot, or pivot and target language,

or both, than between source and target language pair. The third language is called pivot

language. It is introduced to potentially improve the translation quality between the source

and target language. Chapter 3 introduces important concepts and components necessary for

our experiment, which exploits additional language resources during neural network training.

In Chapter 3, we first introduce the concept of artificial neural networks on a high level in

Section 3.1. Building on this intuitive understanding, we explore the mathematical concepts

behind neural networks in Section 3.1.3. We then examine related components in Section 3.2.2

that were crucial for the development of the current state-of-the-art Transformer architecture,

which we introduce in Section 3.2.3. Through this process, we systematically uncover the

basic building blocks that, when further developed and combined in specific ways, form the

powerful modern neural network architecture known as the Transformer. These theoretical

and mathematical components, however, need to be combined and enriched with the domain of

translation and natural language. As the domain of neural networks is rooted in mathematics

9to pivot (verb): to turn or rotate, change in direction. Also, pivot (noun): a person, thing, or factor
having a major or central role, function, or effect
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and computer science, the connection to natural language processing is non-trivial and will be

explored in Section 3.2. By continuously connecting the components, we naturally conclude

our methodology with introducing said Transformer in Section 3.2.3. All these methodological

foundations enable us to conduct our experiment, which we introduce in Chapter 4. In

Chapter 4, we describe the research goal of the thesis and outline the practical considerations,

and introduce the data and framework in which the experiment is conducted, and finally

the framework its results are assessed in. We hypothesize that increasing the size of the

pivot corpus will lead to measurable improvements in BLEU, chrF, and TER scores, with

diminishing returns as the pivot data size increases. The training of large artificial neural

networks requires vast amounts of computational resources. An advantage of neural networks

is the potential of transfer learning, especially in the domain of language modeling. The pivot

experiment leverages transfer learning by combining specific parts of existing models and

fine-tuning them to a limited extent, as opposed to building one single large model. At the

core of our approach is a pivot-strategy, which exploits the data availability of a specific pivot

language to bridge two languages with limited direct parallel data. We exemplary conduct

said experiment based on our methodology on the language pair French and German, using

English as the common pivot language. The low resource situation is artificially created by

heavily undersampling the existing data, and thus limiting the access of sentence pairs for

training. The experiment’s results are found in Chapter 5. First, we visually analyze the

training procedure with the help of Tensorboard, a library specifically built to observe or

log specific reporting metrics, such as the training and validation accuracy during training.

The visual analysis serves as an initial indication of the experimental concept’s validity. We

demonstrate through examples that our experiment was generally successful; however, we also

highlight shortcomings, anomalies, and difficulties encountered during the experimentation.

We observe a slight improvement in translation quality as pivot resource availability increases,

which we demonstrate by comparing translation quality metrics, such as BLEU, TER, and

chrF in Chapter 5. The thesis is of practical nature in the field of computer science. To

ensure reproducibility, the code is published on Github10. However, large parts of the source

code consist of existing elements, such as the OpenNMT and PyTorch libraries, which we

recombined and utilized for our specific needs. In Section 5.3, we discuss the results, explore

them in depth, and compare our results to closely related research in Section 5.3. Finally,

we conclude the thesis in Chapter 6 with an outlook on future research directions based on

the novel insights we provide. This thesis is intended for students and interested readers

in the fields of mathematics and computer science who seek introductory material on the

10github.com

github.com
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subject, with some additional depth. While textbooks on this subject often cover a broad

range of topics, we focus specifically on introducing the transformer architecture alongside an

appropriate experiment, aiming for both scientific value and comprehensibility.
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2 Literature Review

This chapter reviews the history and key developments in large language models, including

findings and research advancements, leading to the current state-of-the-art Machine Trans-

lation approaches. First, we provide a brief review of the major contributions that have

influenced the progression of Machine Translation, starting with early rule-based approaches,

moving through phrase-based and data-driven statistical approaches, and culminating in

neural network-based Machine Translation. Second, we introduce the current state-of-the-art

in Neural Machine Translation (NMT). Third, we introduce the sub-domain of low-resource

Neural Machine Translation. We provide a brief overview of selected topics, including (1)

Exploitation of Monolingual Data, (2) Exploitation of Data from Auxiliary Languages, and

(3) Exploitation of Multi-modal Data.

2.1 The History of Machine Translation

The history of trying to find specific rules between a pair of arbitrary languages and using

rule-based mechanisms or machines for language translation dates back to as early as the

9th century in the origins of Cryptology. ”Cryptology is the study of cryptography and

cryptanalysis. Cryptography is comprised of encryption and decryption. Encryption and

decryption are the processes of substituting, ordering, and permuting discrete inscriptions.

Decryption is the precise reversal of encryption. Cryptanalysis, on the other hand, is a

form of intuitive guesswork that reveals plaintext from ciphertext and therefore admits the

possibility of error (even when rationalized, systematized, or mechanized)” (DuPont, 2018).

In The Codebreakers published in 1977, Kahn describes how ”cryptography was born amongst

the Arabs” and that they were the first to discover and document their findings on paper.

This historical anecdote and the origins of cryptology, however, are of archaeological nature

and in itself their field of research. Instead, we fast-forward about a thousand years to focus

on more modern translation systems and mention their early predecessor only for the sake of

completeness and trivia. The modern precursors for translation machines were developed

by Georges Artsrouni and Petr Petrovič Trojanskij (Hutchins, 2002). They both developed

mechanical translation machines around the year 1933. These purely mechanical devices, the

”mechanical brain” (cerveau mécanique) proposed for patent 1933 by the French engineer

Artsrouni and the ”translating machine” proposed for patent 1933 by the Soviet Union

engineer Trojanskij were limited by the progress and possibilities of their time (Hutchins,

2002). Artsrouni’s machine can be described as a large dictionary capable of producing

simple word-for-word ”rough translations” by having access to up to 40m paper-band (i.e.,

memory or dictionary) and a selection mechanism based on perforations. Hutchins writes
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that Artsrouni did not envision fully automatic or high-quality translation. He was no linguist

and had no awareness of important linguistic concepts such as, e.g., polysemy 11, idioms 12,

or syntactic ambiguity 13. A prototype of Artsrouni’s machine was built and successfully

demonstrated at the Paris Universal Exhibition in 1937. Orders were placed for commercial

production, but the Nazi occupation of France in 1940 ended any further developmentDuPont

(2018). Nevertheless, Astrouni’s work is in retrospect identified by many as an inspiration and

foundation stone for future work in the field (Hutchins, 2002). Trojanskij’s ambition, on the

other hand, was to develop “a machine for selecting and typing words when translating from

one language into another or several others simultaneously” (Hutchins, 2002). His proposal

went beyond dictionary mechanization, unlike his contemporary Artsrouni. He articulated

fundamental translation processes and introduced logical parsing symbols. These symbols

were designed to denote universal grammatical relationships, making them applicable to

any language. In a number of respects, his logical parsing resembles the kind of interlingual

syntactic representation found in later Machine Translation work (Hutchins, 2002).

A possible modern originator of the computer-aided Machine Translation domain however is

arguably Warren Weaver who, unaware of the earlier techniques and patents for translation

machines (Hutchins, 1999), discussed the possibility of Machine Translation and in a July 1949

published memorandum on how to develop a “cryptographic-translation” technique. Weaver

in his famous (Hutchins, 1999) memorandum ”Translation” put forward four proposals, that

Hutchins an English linguist and information scientist who specialized in machine translation

summarised on the occasion of the 50th anniversary of the memorandum:

The first proposal was that the examination of immediate context might tackle

the problem of multiple meanings: If one examines the words in a book, one

at a time through an opaque mask with a hole in it one word wide, then it is

obviously impossible to determine, one at a time, the meaning of words. “Fast”

may mean “rapid”; or it may mean “motionless”; and there is no way of telling

which. (Weaver, 1949, p. 8)

The problem was determining how much context would be required, and Weaver

expected this to vary from one subject to another.

11Polysemy refers to the phenomenon where a single word has multiple related meanings.
12An idiom is a fixed phrase or expression that has a figurative meaning different from its literal meaning.

Idioms often originate from cultural or historical contexts and can be difficult for non-native speakers to
understand because the meaning isn’t directly inferred from the individual words.

13Syntactic ambiguity, or structural ambiguity, occurs when a sentence can be parsed in multiple ways
due to its syntax, leading to different interpretations.
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His second proposal started from the assumption that there are logical elements

in language. He drew attention to a theorem proved by McCulloch and Pitts —

developed in fact in the context of research on the mathematical modeling of the

neural structure of the human brain — that “a robot (or computer) constructed

with regenerative loops of a certain formal character is capable of deducing any

legitimate conclusion from a finite set of premises.” (Weaver, 1949, p. 10) The

mathematical possibility of computing logical proofs suggested to Weaver that

“insofar as written language is an expression of logical character,” (Weaver, 1949,

p. 10) the problem of translation is formally solvable.

The third proposal concerned the possible applicability of cryptographic methods.

Weaver had been impressed at the success of cryptography based on, as he put

it,“frequencies of letters, letter combinations, intervals between letters and letter

combinations, letter patterns, etc. which are to some significant degree independent

of the language used.” (Weaver, 1949, p. 2) Weaver’s ideas on cryptography

were linked to information theory, which had recently been advanced by Claude

Shannon. Weaver was writing a book about information theory with Shannon

at the time (Shannon and Weaver 1949). The theory is concerned with the

basic statistical properties of communication, including the effects of noise in

telecommunication channels and of relative frequencies of signals. In particular,

it embraced “the whole field of cryptography.” (Weaver, 1949, p. 2)

For his fourth proposal, Weaver became more utopian. It was based on the belief

that, just as there may be logical features common to all languages, there may also

be linguistic universals. Earlier in his memorandum, he commented on a paper

by a sinologist Erwin Reifler, who had remarked that “the Chinese words for ‘to

shoot’ and ‘to dismiss’ show a remarkable phonological and graphic agreement.”

Weaver’s comment was: This all seems very strange until one thinks of the two

meanings of ‘to fire’ in English. Is this only happenstance? How widespread are

such correlations? (Weaver, 1949, p. 4) Weaver thought that such universals

may be very common. (Hutchins, 1999, p. 1-3)

In the conclusion of the memorandum, Weaver expresses his conviction of linguistic universals,

which Hutchins describes as one of the most famous metaphors in the field of Machine

Translation:

Think, by analogy, of individuals living in a series of tall closed towers, all erected

over a common foundation. When they try to communicate with one another,
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they shout back and forth, each from his own closed tower. It is difficult to make

the sound penetrate even the nearest towers, and communication proceeds very

poorly indeed. But, when an individual goes down his tower, he finds himself

in a great open basement, common to all the towers. Here he establishes easy

and useful communication with the persons who have also descended from their

towers. Thus it may be true that the way to translate from Chinese to Arabic,

or from Russian to Portuguese, is not to attempt the direct route, shouting from

tower to tower. Perhaps the way is to descend, from each language, down to the

common base of human communication — the real but as yet undiscovered universal

language—and—then re-merge by whatever particular route is convenient. (Weaver,

1949, p. 11)

Weavers’ ideas pioneer the field from rule-based Machine Translation towards statistical

approaches and still influence works today. Hutchins concludes, that in the long term, however,

perhaps the most significant outcome of the Weaver memorandum was the decision in 1951

at the Massachusetts Institute of Technology to appoint the logician Yehoshua Bar-Hillel to a

novel research position created explicitly for contributing to the domain and ideas of creating

machine translation. Bar-Hillel wrote the first report on the state-of-the-art (Bar-Hillel, 1951)

and organized the first conference on Machine Translation in June 1952, which is regarded

as the first true milestone in the history of modern (western) Machine Translation. Thus,

research on Machine Translation continued after Weaver. Figure 2 shows a flowchart that

describes just a part of a complex rule-based translation algorithm from 1955 that was used in

IBM TYPE 701, a famous machine translation computer endeavor in the 1950s. In the 1960s,

however, Bar-Hillel surveyed the field of Machine Translation and critically concluded not

only that the prospect of fully automatic high-quality translation was unrealistic given the

current state of technology, but that the entire project was impossible in principle (Bar-Hillel,

1960). Sponsors to Machine Translation research grew sceptical and started being concerned

over the stagnating advances, as expressed in the Automatic Language Processing Advisory

Committee (ALPAC) report issued in 1964 (Hutchins, 1996). ”Pre- and post-editing Machine

Translation by humans was the norm, which required considerable time and effort.” (Hutchins,

1996) The limitations of early Machine Translation methods stemmed primarily from their

reliance on rule-based approaches, which attempted to codify linguistic rules and patterns

into computational algorithms (e.g., Figure 2). Published in November 1966, the ALPAC

report (Pierce et al., 1966) brought an end to substantial funding for Machine Translation

research in the United States for nearly twenty years. More significantly, perhaps, was the

clear message to the general public and the rest of the scientific community that Machine



13

Figure 2: Flowchart of part of the dictionary lookup procedures (from Sheridan 1955), Source:
Hutchins (2006)

Translation was hopeless (Hutchins, 1996). However, the committee agreed that research

should continue ...

... in the name of science, but that the motive for doing so cannot sensibly be

any foreseeable improvement in practical translation. Perhaps our attitude might

be different if there were some pressing need for machine translation, but we find

none. (Pierce et al., 1966, p. 24)

The ALPAC report ends most of the Machine Translation research endeavors, preventing

funding and dampening research interests in general. Machine Translation became part

of and was in parts responsible for the first AI winter 14, which started with the ALPAC

report 1966, to strongly paralyzing the domain from 1974 to approximately 1980 (Wikipedia,

2024). However, advances in Machine Translation did not stop completely and gained

14In the history of artificial intelligence, an ’AI’ winter refers to a period of reduced funding and interest in
artificial intelligence research. The field has experienced several hype cycles, followed by disappointment and
criticism, followed by funding cuts, followed by renewed interest years or even decades later Wikipedia (2024).
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momentum over time outside of the USA, i.e., in Japan, the Soviet Union, and EuropeHutchins

(1989). By the 1980s, fully automatic high-quality machine translation had become practical

and was being widely adopted by both governments and private organizations DuPont

(2018). Enhanced methods and models improved translation quality, and faster, cheaper

microcomputers further increased success while reducing costs DuPont (2018). In the 1990s,

research moved away from hand-crafting linguistically motivated rules, and instead used

example-based, data-oriented large language corpora and sophisticated statistics. A

development that was sparked by exploits in artificial intelligence research and general

advances in hardware and technology in addition to IBM research by Brown et al. who

in 1990 published A Statistical Approach to Machine Translation - which set the field of

Statistical Machine Translation in motion. The shift from rule-based to statistical approaches

in Machine Translation brought about several implications. Statistical approaches reduce

the reliance on manually encoded linguistic rules, allowing for more flexible and scalable

translation systems. Instead of explicitly defining rules, Statistical Machine Translation

systems learn patterns and associations from data, making them more adaptable to diverse

language pairs and domains (Brown et al., 1990)(Brown et al., 1993). While statistical

approaches excel in capturing common translation patterns, they may struggle with rare

or ambiguous phrases that lack sufficient training data. Addressing this challenge requires

techniques such as domain adaptation, data augmentation, and hybrid approaches combining

statistical and rule-based methods. Since the 1990s statistical machine learning has flourished

and was only recently dominated by the new state-of-the-art in Machine Translation. In

the Year 2013, Kalchbrenner and Blunsom introduced ”Recurrent Continuous Translation

Models” (Kalchbrenner & Blunsom, 2013), ushering in the era of Neural Machine Translation

by achieving state-of-the-art results in several experiments. Kalchbrenner’s and Blunsom’s

model encodes a given source text into a continuous vector using a (convolutional) neural

network, and then uses a recurrent neural network as the decoder to transform the state

vector into the target language, freeing the need for excessive feature engineering compared to

Statistical Machine Translation (Zhang, 2017). A year later Sutskever et al. (2014) and Cho

et al. (2014) proposed the first pure sequence-to-sequence models for machine translation.

Today, the Machine Translation domain has little role for linguists or rational, rule-based

models of language DuPont (2018). “Number crunching” 15 for Machine Translation is now

the norm. As of the Year 2024, the prior state-of-the-art Statistical Machine Translation

approach has nearly completely evolved into Neural Machine Translation which utilizes

15”Number crunching” refers to the large number of calculations that take place during training and
inference of large neural networks which Neural Machine Translation is based on
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massive computational capabilities employing large and complex artificial neural networks,

dominating and surpassing all other machine-based methods of language translation.

2.2 The Current State of the Art - Neural Machine Translation

Koehn in his book Neural Machine Translation reports that during the wave of neural network

research in the 1980s and 1990s, machine translation had been in the sight of researchers

exploring these methods. The models proposed by Forcada & Ñeco (1997) and Castaño

et al. (1997) are ”strikingly similar” (Koehn, 2017) to the current dominant neural machine

translation approaches. Koehn adds, however, that none of these models were trained on

data sizes large enough to produce reasonable results for anything but toy examples. He

further states, that the computational complexity involved by far exceeds the computational

resources of that era, and hence ideas have been abandoned for almost two decades (Koehn,

2017, p. 9-10). Koehn presents that the modern resurrection of neural methods in machine

translation started with the integration of neural language models into traditional statistical

machine translation systems and makes the necessity to use GPUs for training, which was

expensive and difficult to do, responsible for the slow exploitation by the academic domain.

Nevertheless, Kalchbrenner & Blunsom (2013), Sutskever et al. (2014) and Cho et al. (2014)

were soon able to produce translations for short sentences. The addition of the attention

mechanism Bahdanau et al. (2016) finally yielded competitive results. Koehn adds an

anecdote, which further emphasizes the speed in which the field of Machine Translation

developed:

Within a year or two, the entire research field of machine translation went neural.

To give some indication of the speed of change: At the shared task for machine

translation organized by the Conference on Machine Translation (WMT), only one

pure neural machine translation system was submitted in 2015. It was competitive

but outperformed by traditional statistical systems. A year later, in 2016, a neural

machine translation system won in almost all language pairs. In 2017, almost all

submissions were neural machine translation systems. Koehn (2017, p.10)

Today (2024), Neural Machine Translation models dominate the field of Machine Translation.

They are on par with statistical approaches16 and usually even surpass them, depending on

the language pairing and the linguistic aspects or availability of data. Achieving human-level

translation quality with Neural Machine Translation approaches seems to be within reach, as

16Phrase-based Machine Translation is a representative of the Statistical Machine Translation discipline
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Figure 3: The comparison between the translation quality (score from 1 to 6) of GNMT
(Google Neural Machine Translation, green), PBMT (Phrase-Based Machine Translation,
blue) and human translation (yellow) for different language pairings. The comparison depicts
the mean translation quality on the y-axis on a scale from 0 to 6 where human raters have
repeatedly evaluated and compared the quality of two translations presented side by side for
a given source sentence (Wu et al., 2016). The x-axis reports these values for each pair of
languages. The evaluation data consisted of 500 randomly sampled sentences from Wikipedia
and news websites, and the corresponding human translations to the target language for each
language pair. Source: Human vs. AI: An Assessment of the Translation Quality Between
Translators and Machine Translation, (Wu et al., 2016)

seen in Figure 3.

2.3 Low-Resource Neural Machine Translation

The primary task of the thesis is to explore a pivoting strategy for a low-resource neural

machine translation scenario. While there are thousands of languages in the world, the

major popular commercial translators (e.g., Google translator, Microsoft translator, Amazon

translator) only support tens or a hundred languages due to the lack of large-scale parallel

training data for most languages (Wang et al., 2021). In recent years, many algorithms have

been designed for low-resource Neural Machine Translation. Following the survey conducted

by the Microsoft Research Group Wang and colleagues, theoretical streams can be divided

into three major groups:

1. Exploitation of Monolingual Data

2. Exploitation of Data from Auxiliary Languages
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3. Exploitation of Multi-modal Data.

While all three groups have a similar goal - to eliminate the most limiting factor for Neural

Machine translation: its need for large amounts of parallel data for model training - there are

clear differences between their strategies. Since the field is expanding and developing quickly

(as indicated by the current exponential growth in Figure 1), exploitations in groups (1) and

(3) beyond the findings in Wang et al. (2021) are not or are not necessarily further discussed

in the scope of this thesis. In this thesis, one idea belonging to the group (2), the exploitation

of data from auxiliary languages, is being explored primarily. For completeness and overview,

all three groups are introduced briefly. Readers who are familiar with the domain of statistical

machine translation may find parallels to known approaches and strategies that have been

explored in the past in the field of statistical machine translation. Pivoting or using an

intermediate language, e.g., has been proposed by Schubert as early as 1988. Neural Machine

Translation can be understood as a descendant of Statistical Machine Translation, so many

ideas that improved Statistical Machine Translation may also inspire current and upcoming

improvements and advances in Neural Machine Translation. Also, advances in low-resource

machine translation can lead to general advances in machine translation, as the abundance of

training data seems to increase the translation quality (Johnson et al., 2017), so techniques

and exploits may be applied to rich-resource scenarios as well. Later, in Chapter 3, we

will conduct a more rigorous and formal introduction to nomenclature, core concepts, and

definitions regarding Neural Machine Translation.

2.3.1 Exploiting Monolingual Data of Source and/or Target Languages

Monolingual data contains a wealth of linguistic information (e.g., grammar and contextual

information) and is more abundant and easier to obtain than bilingual parallel data. In

the following strategies, making use of the abundance of monolingual data is exploited to

improve the translation quality especially in low-resource scenario. Sennrich et al. (2016a)

propose using monolingual data as an addition to the parallel data, with one-sided empty

pairs that can be conceived as a form of dropout. Additionally, Sennrich et al. propose

Back-Translation massively augmenting their corpus with synthetical data for the source

side while the target side comes from the monolingual corpus. Sennrich et al. (2016a) report

considerable improvements against models that do not exploit monolingual data (+1 to 3

BLEU points). The BLEU metric is the most common metric for benchmarking machine

translation approaches. A higher BLEU metric is understood to correlate with a higher

translation quality. The BLEU metric is thoroughly introduced in Chapter 4. Hoang et al.

(2018) propose iterative back-translation as an improvement over (Sennrich et al., 2016a).
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Another improvement in BLEU is reported by Zhang & Zong, who propose exploiting not

the target but the source side of the monolingual data. Zhang & Zong (2016) propose a novel

self-learning algorithm to generate synthetic large-scale parallel data and on top of that use a

multi-task learning framework with two Neural Machine Translation models to predict the

translation and the reordered source-side monolingual sentences simultaneously (Zhang &

Zong, 2016). Furthermore, the concept of dual learning is proposed by Xia et al. (2016). Xia

et al.’s approach utilizes both the source- and target-side of the monolingual data, which

again leads to substantial improvements over the baseline (+1 to 5 BLEU points). Dual

learning is achieved by a novel two-agent communication game and a warm-up phase with

only 10% of parallel/bi-lingual data (Xia et al., 2016). The results indicate that working

with small fractions (”only 10%”) can indeed already suffice to generate models that are

on par with models trained on more abundant data resources. In general, exploiting one or

both sides of source- and/or target language has been and is explored by different actors in

the domain. Ideas range from unsupervised Neural Machine Translation, back- and forward-

translation, joint training on both translation directions, language model pre-training, and

mining parallel information from comparable corpus, to enhancing the training with bilingual

dictionaries (Wang et al., 2021). These promising techniques can be and are combined to

achieve and strive for even better results in low-resource Neural Machine Translation.

2.3.2 Exploiting Data from Auxiliary Languages

Languages with similar syntax and/or semantics are helpful to each other when training

Neural Machine Translation models. Wang et al. report three distinct categories for exploiting

data from auxiliary languages by leveraging similarities in vocabulary, word order, or grammar.

(1) multi-lingual training, where the low-resource pair is jointly trained with other language

pairs in one model, (2) transfer learning, where a parent Neural Machine Translation model

containing a rich-resource language pair is later fine-tuned and (3) pivot translation, where

one or more pivot languages are selected to serve as bridges between source and target

language. Johnson et al. describe pairing different low and high resource languages (1)

into one large dictionary. They introduce an artificial token (’<2target-language>’) as a

source data prefix. All other components (encoder, decoder, attention, shared wordpiece

vocabulary) stay the same (Johnson et al., 2017). In doing so, they train a multilingual

model that can translate two or more source languages into the specified target language,

therefore leveraging the rich resources of the auxiliary language during training. Johnson

et al. report that models trained on A −→ B and B −→ C pairings deliver reasonable results

for A −→ C (zero-shot translations), even though the corpus does not contain any A −→ C

pairs. To Johnson et al. knowledge, it is the first work to demonstrate the possibility of
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zero-shot translation and a successful example of transfer learning in machine translation. In

their experiments, the quality of the translations (BLEU Score) is improved when multiple

source languages are translated into one target language (Many-to-One). In other scenarios

(One-to-Many, Many-to-Many) the quality does not improve or even declines - even though

other improvements such as the high redundancy of many different models for individual

language pairs become apparent (Johnson et al., 2017). In another work Zoph et al. propose

a transfer learning approach (2). Their idea is to train a parent model and transfer some

amount of parameters to the child model for initialization and constraining training (Zoph

et al., 2016) 17. The low-data child model will thus not start with random weights and has

either target or source language embeddings ”already in place”. These embeddings can be

fixed or frozen and do not need to be trained anew. Zoph et al. increase the amount of BLEU

for a given language pair by an average of 5.6 BLEU for 4 low-resource language pairs against

their neural machine translation baseline and report being close to a strong syntax-based

machine translation model18. On top of reporting on transfer learning in general, Zoph

et al. state the importance of identifying sensible parent languages as similarity seems to

correlate with a stronger positive impact on the final low-resource neural machine translation

model. Auxiliary language selection is a field of interest and different approaches are being

investigated. Wang et al. list several authors that have tried to determine if languages from

the same language family, languages based on closely clustered embeddings, or language-

level/sentence-level similarity between languages result in the most helpful starting point for

model training. Furthermore, different manipulation approaches, such as re-ordering words

in a sentence and re-designing parts of the auxiliary language to align with the low-resource

language have shown improvements (Wang et al., 2021). The third exploitation (3) is the

usage of one or more pivot languages in training. This strategy involves using one or more

rich-resource languages as a bridge between the source and target language. An improved

source-target translation can be formed by creating a source-pivot and pivot-target corpus

and model. There are mainly three ways to exploit the pivot strategy. The first and most

naive approach is, to first translate the source into the pivot language, and then to translate

the pivot into the target language - essentially building a pseudo-parallel corpus between

source and target language. This simple and effective approach suffers from the problem

of error propagation: mistakes made in source-to-pivot translation will be propagated to

pivot-to-target translation. For cases where the source-to-target models are of poor translation

17The parent and child nomenclature is based on a data structure (Tree) and refers to a subnode of a
given node in a tree (graph structure) which is called a child node, and the given node, in turn, is the child’s
parent.

18short: SBMT, statistical machine translation approach)
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quality because, e.g., the language pair is distant in family and grammar, this naive pivoting

method can lead to improvements (Leng et al., 2019). In most cases, one pivot language is

selected based on prior knowledge (e.g., language family, similar syntax, grammar). Leng

et al. (2019) propose a learning-to-route (LTR) method to automatically select one or several

pivot languages to translate via multiple hops to increase translation quality to up to +5

BLEU points (Leng et al., 2019) against naive low-resource source-target neural translation

models. The second approach is, to train a source-pivot and pivot-target model directly and

to find a combination of their results leading to one model, e.g., using pivot-word-embeddings

as a common connection term (Cheng et al., 2017), or, e.g., using a teacher-student approach

as introduced in (Chen et al., 2017). The latter is interesting as it does not use any parallel

corpus between the source and target language. Instead, the method assumes that parallel

sentences in pivot-to-target have similar probabilities as pivot-to-source, therefore training

the source-to-target model directly while guiding it with a pivot-to-target teacher model,

should suffice. Chen et al. (2017)’s approach not only allows for direct parameter estimation

but also improves efficiency while completely avoiding the problem of error propagation due

to pivoting. Their results show an improvement of up to +3 BLEU points across multiple

language pairs against their baseline (Chen et al., 2017). The third way involves leveraging

the parameters of the source-pivot and pivot-target models. Kim et al. (2019) transfer

the encoder of the source-pivot model and the decoder of the pivot-target model to the

source-target model. Re-using parts from closely related models is similar to pre-training or

the transfer-learning strategy introduced by Zoph et al. (2016). While in general similar to

pre- and transfer learning, the exploitation of pivot languages potentially greatly influences

the translation quality Wang et al. (2021).

2.3.3 Exploiting Multi-modal Data

Multi-modal data (e.g., parallel data between text and image) has also been used in low-

resource Neural Machine Translation. Pseudo-parallel corpora are at the base of the ex-

ploit (Chen et al., 2019). E.g., descriptions for images in source and target language can

be interpreted as describing the same context and, therefore be used to learn from. Chen

et al. even use the term ”image-pivot”, drawing clear parallels to the ”exploitation of pivot

languages” strategies introduced in Subsection 2.3.2. Chen et al. propose using respective

image caption models that describe an image in both the source and target languages to

build a parallel corpus, primarily to increase the availability of data for rare or low-resource

languages. The strategy can potentially be applied to other sources of data as well. How-

ever, due to the difficulty of data acquisition in low-resource scenarios, the exploitation of

multi-modal data is currently limited (Wang et al., 2021). In other literature, exploiting
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multi-modal data, e.g., image-pivoting is summarized under pivot-based strategies (Chen

et al., 2017) and not a theoretical stream on its own.

2.4 Pivot based Transfer Learning for Neural Machine Translation

The subject of this thesis is to reproduce the results and findings based on the pivot strategy

introduced by Kim et al. (2019) and Mhaskar & Bhattacharyya (2021) while exploring

and presenting the transformer architecture. Mhaskar & Bhattacharyya introduce a single

source-target model that counteracts the two major drawbacks the common naive pivoting

strategy has. Firstly, the source sentence is passed through two different neural machine

translation models to produce the target sentence. Passing through multiple models multiplies

the decoding time for generation accordingly, which is inefficient. Secondly, the errors in

the first translation step (source-pivot) propagate into the second translation (pivot-target),

which leads to a reduction of translation quality. Mhaskar & Bhattacharyya describe the

method that counteracts these drawbacks as direct pivoting. Their approach is to train two

separate models, source-pivot and pivot-target, on their respective high-resource parallel

corpus. Afterward, they detach the encoder from the source-pivot model and the decoder from

the pivot-target model to create a third encoder-decoder model, on which a final fine-tuning

with the low-resource corpus is performed. Their hypothesis is that the initialized encoder and

decoder of the source-target model have already learned some representations or knowledge

from the previous tasks, and that this knowledge aids in the source-target translation task.

Their approach is closely related to Kim et al. (2019), who theorized a similar method but

pointed out a caveat: the source encoder is trained to be used by a pivot decoder, while

the target decoder is trained to use the outputs of a pivot encoder—not a source encoder.

Kim et al. instead propose step-wise training of a source-pivot model on a source-pivot

corpus, followed by continued training with a pivot-target corpus while freezing the encoder

parameters. They hypothesize that, in the second step, the target decoder is trained to use

the outputs of the pre-trained source encoder as input. However, freezing the pre-trained

encoder ensures that even training on the pivot-target corpus in the second step the final

model’s encoder encodes the source language. They reason that without the freezing, the

encoder completely adapts to the pivot language input and is likely to forget source language

sentences (Kim et al., 2019). This approach requires a joint vocabulary of the source and

pivot languages so that the encoder effectively represents both languages. Kim et al. (2019)’s

approach produces interesting results and formulates a framework in which we plan to embed

our experiment: Does a relation between translation quality and availability of pivot resources

exist, and if so, is there a point of diminishing returns? We explore our experiment in greater
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detail in Chapter 4.
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3 Methodology

In this Chapter, we present the comprehensive methodology employed to investigate the

impact of varying the amount of resources within the exploitation of using a pivot language

strategy for machine translation. The methodology is structured on a foundation of both

theoretical and practical considerations, to ensure a nuanced understanding of the interactions

within the translation process. At the core, neural networks need to be revisited, including

the introduction of the back-propagation algorithm, which is further built upon to introduce

the transformer architecture. Also, a detailed introduction to neural machine translation is

provided, as neural machine translation is the main theme of this study.

3.1 Neural Networks

In revisiting neural networks, this chapter delves into fundamental concepts and introduces

the backpropagation algorithm, a key advancement in the training of neural networks.

Understanding the intricacies of neural networks is essential for grasping the subsequent

sections that delve into sequence to sequence learning which is the basis for translation. The

basis, however, evolves into a more modern concept called Transformer, which is the neural

network architecture the thesis’ experiment is utilizing. The explanation begins with the

basic concepts of neural networks. Neural networks are introduced in a variety of books

and sources. In the introduction of notation and concepts for artificial neural networks, we

primarily use (Hastie et al., 2001) and (Bishop & Bishop, 2024) as a source. In this section,

first, historical remarks are given, then neural networks are introduced on a conceptual level,

and finally, a more formal and rigorous definition is proposed.

3.1.1 The Origin of Artificial Neural Network

Neural networks are the backbone of modern machine learning, mimicking a simplified

structure and functioning of mammal brain neurons (compare Figure 4). The mammal or

human brain consists of interconnected neurons, the fundamental units of the nervous system.

Neurons communicate through synapses using electrical impulses and chemical signals. Each

neuron receives electrochemical inputs from other neurons in the dendrites (Williams et al.,

2016). If the sum of these electrical inputs is sufficiently powerful to activate the neuron, i.e.,

if the action potential threshold is surpassed, it transmits an electrochemical signal along the

axon and passes this signal to the other neurons whose dendrites are attached at any of the

synaptic terminals. These attached neurons may then fire. The brain has intricate neural

networks with multiple layers of neurons and complex connectivity patterns and exhibits
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Figure 4: Model of a biological neuron. Source: Wikimedia/Neuron 19

memory through the strength of synaptic connections and patterns of neural activation. A

human brain contains around 90 billion neurons in total, each of which on average has several

thousand synapses with other neurons, creating a complex network having a total of around

100 trillion (1014) synapses (Bishop & Bishop, 2024).

In the computer science domain, these biological concepts were first abstracted by

McCulloch & Pitts. In their 1943 paper ”A logical calculus of the ideas immanent in nervous

activity” (McCulloch & Pitts, 1943) the McCulloch-Pitts neuron is introduced to the scientific

community. The two scientists make ”physical assumptions which are most convenient for

the calculus” (McCulloch & Pitts, 1943) and show that simple, linear gates (AND, OR, NOT,

and others) can be constructed from those assumptions using the simplified artificial nets

and their neurons. In 1949, Hebb’s work (The Organization of Behavior) highlights the

reinforcement of neural pathways through usage, a concept integral to (human) learning.

Hebb proposes that the simultaneous firing of two nerves strengthens their connection. The

widespread quote in the machine learning community ”What fires together wires together”

later is derived from Hebb’s theories (Shatz, 1992) 20. The quote suggests that neurons that

simultaneously show high activation should be also reinforced simultaneously. The statement

20not by Donald Hebb himself but most likely by Carla Shatz an American neurobiologist who wrote ”In a
sense, then, cells that fire together wire together.” in the Journal Article ”The Developing Brain” from 1992
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is an oversimplification and should therefore be used and interpreted with caution.

While mnemonic, this summary bares the risk of obscuring the importance of

causation in Hebb’s actual work: if two neurons literally fire together, i.e., at the

same time, the firing of one cannot cause that of the other. Temporal precedence,

rather than simultaneity, is the signature of causality and would indicate that ‘one

took part in firing the other’. (Keysers & Gazzola, 2014)

Nevertheless, despite the many inaccuracies and oversimplifications trying to mimic the

biology of the brain, these two early works lay the early foundation for the development of

modern artificial neural networks that drive complex applications, such as the face recognition

of media management software, artificially generative text applications or even autonomously

driving cars.

3.1.2 Artificial Neural Networks

We first explore artificial neural networks on a high level to introduce the concept and build

up intuition. Hastie et al. gives a good foundation for this intuition. Later in this section,

we introduce the notation and definitions given by Bishop & Bishop in their latest work

Deep Learning - Foundations and Concepts, 2024. A computational graph notion is provided

by Goldberg (2017).

Artificial Neural Networks: Intuition At their core, artificial neural networks consist of

layers of interconnected nodes. Each layer contributes to the extraction and transformation

of information. The input layer receives data, hidden layers process it, and the output layer

produces a final result. The central idea is to extract (without loss of generality) linear

combinations of the inputs as derived features, and then model the target as a nonlinear

function of these features (Hastie et al., 2001). Oversimplified, the goal is to deduce some

true target signal Y by transforming information encapsulated in x⃗, one of many observations

with 1, . . . , D different measurements (also called features), and coefficients w⃗ in a specific

way: Y = h(X, w⃗), where h is called an activation function. Y can be virtually anything as

long as it can be expressed as a number: Class membership probabilities (e.g., probability of

an image belonging to a category such as ”cat” or ”no cat” in image classification problems),

or a (positive) real number (e.g., the price of an apartment in $). In the case of language

translation modeling, e.g., Y is a set of vectors with probabilities linked to a vocabulary

dictionary. These probabilities indicate the likelihood of each respective word being the a

proper translation candidate or the next word in the translated sentence conditioned on

the input sentence x⃗ from text corpus X. x⃗, on the other hand, is what we hope carries
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the information for this deduction to work. Most of the time x⃗ does not come alone but

is part of a series of observations X = ([x⃗]1, . . . , [x⃗]N). This object can be understood as

a collection of information in matrix form, where the [x⃗]i are the rows (one observation

corresponds to one row) and, where each entry in the D-dimensional vector x⃗ = (x1, . . . , xD)

is a feature. Henceforth, the data matrix X is the collection of information. In other words,

for an output signal Y we are interested in what information exactly X carries to, as close

as possible, reconstruct Y, and how exactly the reconstruction process needs to look like,

i.e, what kind of function, parameters or coefficients we need to express f : X 7→ Y. And

that is where the weights come into play. The weights are the coefficients that decide which

part of some x⃗ ∈ X needs to be recognized less or more for reconstructing some y⃗ ∈ Y. In

artificial neural networks, the weights are learnable parameters that change during the training

process. Initially, the weights are random values that throughout the training procedure

strategically converge to a fixed estimation of w⃗ that lead to Ŷ (the reconstructed signal)

that is close to Y (the true output signal), i.e., the optimization goal is argminw⃗|X(Y − Ŷ).

In our case, the reconstruction process f is an artificial neural network, our information

is carried by x⃗ ∈ X and our signal of interest is Y. Similar concepts can be found in

other statistical or machine learning-related approaches, such as a simple linear regression.

The more information the many x⃗ related to their corresponding y⃗ carry, the better the

reconstruction potential. Caution: There are cases in which X does not encapsulate enough

information or the information is by chance related to Y. In the first case, the reconstruction

of Y fails, which is indicated by bad performance metrics when testing the reconstruction

on data examples for which we know the true Y, i.e., when the discrepancy between our

estimate Ŷ and the true signal Y is big. For this reason, it is common practice to test a

reconstruction model and calculate how well the model fits the input signal onto the output

signal. In the second case, the reconstruction of Y might succeed and the so-called spurious

relationship might even stay undetected. The famous saying ”correlation does not imply

causation” therefore needs to be in the back of one’s mind when approaching any sort of

signal reconstruction.

Another example of a spurious relationship can be seen by examining a city’s

ice cream sales. The sales might be highest when the rate of drownings in city

swimming pools is highest. To allege that ice cream sales cause drowning, or vice

versa, would be to imply a spurious relationship between the two. In reality, a

heat wave may have caused both. The heat wave is an example of a hidden or
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unseen variable, also known as a confounding variable. 21

It becomes apparent that, on top of that, the input data X plays an essential role in the

reconstruction of the signal. The interplay of these factors, the nature of the reconstruction

approach, the aspired output signal, and the quality and relevance of the source data for the

output signal are the difficulties when building approximation models for signal reconstruction.

Single-layer Perceptron The simplest form of a neural network is a single-layer perceptron

(sometimes called the single hidden layer back-propagation network (Hastie et al., 2001)).

Figure 5 on the left-hand side shows the neural network input layer, in this example a

x1

x2

x3

h(Σwx+ b) ŷ

w1

w2

w3

Figure 5: Single-Layer Perceptron

three-dimensional, real-valued vector x⃗ = (x1, x2, x3). The edges towards the sigma symbol

are called weights w⃗ = (w1, w2, w3) and determine the magnitude the corresponding input

is incorporated into the activation function h, i.e., the amount the specific weighted input

value is adding or removing towards a threshold needed to be surpassed for the neuron to

activate. The term b is called bias and can be introduced to dampen or amplify the neuron’s

ability to overcome its activation threshold. Each neuron produces an output that is either

the input of the next neuron or the final output signal of the network. In Figure 5 the final

node is shown as ŷ. The choice of notation is not common but emphasizes that evaluating

the network brings forth a reconstruction estimation at its final output layer, not the true

signal. Another possible choice of notation would be to denote the output node of the neural

network building block as a function of the input layer and the weights. Since the neural

network’s nature is recursive, there is no difference between the intermediate and the final

output. The recursive nature of the procedure is promoted using the function notation as

depicted in Figure 6. In other words, the output of a neural network component may be the

input for the component, like a building block. These blocks can be combined, intertwined,

and stacked horizontally, or vertically for varying artificial neural network architectures and

configurations.

21Wikipedia: Spurious Relationship, https://en.wikipedia.org/wiki/Spurious relationship

https://en.wikipedia.org/wiki/Spurious_relationship
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Figure 6: Single-Layer Multiple-Hidden-Nodes Variation
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Figure 7: Multi-Layer Multiple-Hidden-Nodes Variation

x1

x2

x3

x4

Σ

Σ

Σ

Σ

ŷ

Figure 8: Fully connected feedforward artificial neural network

The core idea, in principle, stays the same. The examples in Figure 5 to Figure 8 depict

small variations to simple neural networks and should be intuitive to follow. In these

examples, because each node is connected to all nodes in the following layer, the architecture

is characterized as ’fully-connected’. It is also characterized as ”feedforward” because the

computation proceeds iteratively from one layer of units to the next.

The setting of weighted paths between nodes can vary depending on the context. The width,

depth, and interconnectedness are the most basic variations of the artificial neural network

architecture. More complex variations are introduced in Section 3.2.2 about recurrent neural

networks and Section 3.2.3 about the transformer architecture.
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x1

x2

x3

x4

Σ

Σ
Σ ŷ

Figure 9: Artificial neural network Variation with multiple hidden Layers but not fully-
connected

Activation Functions Activation functions play a crucial role in determining the output

of a neuron. They control if and to what extent a neuron influences the artificial neural

network calculation. Activation functions are simple, differentiable, often-times bounded

parameterized functions that take aj = bj+
∑D

i=0 w
(m)
ij ·xi, x ∈ RN×D, m = 1, . . . ,max depth,

(max depth represents how many hidden layers the architecture has, bj is the bias term of the

neuron in the m-th layer) as their input and map them to a single-valued, real output. w
(m)
ij

describes the weighted path connecting neuroni in the (m− 1) layer to neuronj in the (m-th)

layer. As i goes up toD (the number of neurons in layer (m−1)), the neuron at aj accumulates

the sum of the current input nodes xi multiplied by their respective weight w
(m)
ij . There is no

rigorous definition for these functions as they are often tailored to fit a specific problem and

are an area of research on their own. The activation functions can introduce non-linearities,

allowing neural networks to learn non-linear relationships within the data. Otherwise, if the

activation function is linear, only linear or affine mappings can be represented. Figure 10

shows common activation functions including (without loss of generality) hyperbolic tangent

(a), a hyperbolic tangent derivation (b), rectified linear unit (d) and a rectified linear unit

derivation (e), each serving specific purposes in different contexts. Bishop & Bishop (2024)

also lists softplus (c) and absolute (f). Their predecessor, the logistic sigmoid function (see

Eq. 1), is widely used in the early works on multi-layer neural networks. Sigmoid functions

are inspired by studies on the properties of biological neurons (Bishop & Bishop, 2024).

As mentioned before, the role of the activation function is to either suppress or control the

amount a specific neuron is firing. Mathematically, the behavior can be constructed, e.g.,

by mapping input value x ∈ R to representative values that are by definition interpreted as

suppression, e.g. f(x0) = 0, where the value 0 implies ”x0 does not produce enough activation

potential”, or activation and its potential, e.g., f(x0) = θ+ ϵ, implying there is θ+ ϵ activation

potential, which is equal to or stronger than the minimum threshold of excitation θ needed

to activate the neuron. Biologically, there exists a neuronal excitation curve over time. If
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Figure 10: A variety of nonlinear activation functions. Source: Bishop & Bishop (2024,
p.184, Figure 6.12)

the excitation threshold is met, the electrochemical signal first spikes due to its respective

electrochemical composition, peaks at the activation potential, and vanishes after passing

the activation potential onto the next neuron. The time component in the artificial replica

is modeled by evaluating the activation function and is negligible. Passing the potential

on is modeled by the activation function. The electrochemical spike and its maximum, the

activation potential, can mathematically be constructed by bounding θ + ϵ ∈ (0, 1] (without

loss of generality). The sigmoid functions are a known class of differentiable functions to

achieve such feats: they take any real-valued integer and smoothly map it to (0, 1).

Sigmoid Function:

σ(a) =
1

1 + e−a
(1)

Mathematically, logistic sigmoid functions have the characteristic of mapping (−∞,∞) 7→
(0, 1), whereas other activation functions, e.g., tanh can map to ranges such as (−1, 1).
Allowing for a negative value range can be conceptualized as inhibitory potential. At this

point the biological model is gradually being neglected and mathematical sensibility is

prioritized. Theoretically, for any network with logistic sigmoid activation functions, there

is an equivalent network with tanh activation functions, as the difference is just a linear

transformation of input and output values.
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Hyperbolic Tangent (tanh):

tanh(a) =
ea − e−a

ea + e−a
(2)

However, the first derivative of the hyperbolic tangent tanh′(a) = 1 − tanh(a)2 has a

stronger gradient in comparison to the first derivative of the logistic sigmoid function

σ′(a) = σ(a)(1− σ(a)), which can be useful since the backpropagation algorithm, which is

introduced in Section 3.1.3, relies on the activation function’s gradients. Stronger gradients

imply faster parameter convergence due to larger, steeper learning steps.

Hard Hyperbolic Tangent (hard tanh):

h(a) = max(−1,min(1, a)) (3)

Derivatives of the activation functions arise due to specific drawbacks of the original function,

e.g., limiting behavior in training due to the range the real values are mapped to, or

computational performance gains during the backpropagation algorithm. The derivative

for the hard hyperbolic tangent, as one can deduce from graph (b) in Figure 10, is 0 for

−1 ≤ a and a ≥ 1, and 1 for values in a ∈ [−1, 1], which computationally is cheap and easy

to implement. Otherwise, it has similar characteristics as the tanh activation function.

Softplus:

h(a) = ln(1 + exp(a)) (4)

The softplus function, for values a≫ 1, has the characteristic h(a) ≃ a, i.e, h has approximate

equality and proportionality for positive, large values a helping to alleviate the vanishing

gradients problem which we introduce in Section 3.1.3.

Rectified Linear Unit (ReLU):

h(a) = max(0, a) (5)

The rectified linear unit function (ReLU) is even simpler. Empirically, it is the best-performing

activation function, and on top of that, it is extremely cheap to compute. The derivative

is 1 for a > 1 and defined22 to be 0 at a ≤ 0. Consequently, neurons can potentially get no

backpropagated error signals, effectively halting the learning process for those neurons. In

extreme cases, neurons with consistently negative activations may become dead neurons that

22undefined at a = 0 but this is ignored in practice (Bishop & Bishop, 2024)
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remain inactive throughout training and do not contribute to the model’s predictive power23.

Leaky Rectified Linear Unit (leaky ReLU):

h(a) = max(0, a) + α min(0, a), where 0 < α < 1. (6)

A modification of ReLU that seeks to avoid the issue of dying neurons is called a leaky ReLU.

It has nonzero gradients for a < 0, which ensures that there is a signal to drive training. The

absolute function denoted as (f) in Figure 10 is a modification of leaky ReLU where α is set

to −1, in which case h(a) = |a|. It is worth noting that α is a trainable parameter, allowing

the artificial neural network to determine how strong these inhibiting effects are. To further

emphasize ReLU’s practical relevance, Bishop & Bishop remark

... the introduction of ReLU gave a big improvement in training efficiency over

previous sigmoidal activation functions (...) [M]any practical applications simply

use ReLU as the default unless the goal is explicitly to explore the effects of

different choices of the activation function. (Bishop & Bishop, 2024, p. 185)

In Figure 6, the activation function’s f input is x⃗w⃗t, which is the scalar product ⟨x⃗, w⃗⟩
and therefore denoted with the large sigma symbol Σ. The vector notation is a common

choice since it is much shorter than using the many indices. Figure 5 depicts (x1, x2, x3)

weighted by (w1, w2, w3). The notion of ⟨x⃗, w⃗⟩ =
∑3

i=1wi · xi does expand to the general

case for other architectures. When handling multiple neurons in multiple layers we need

to introduce subscript j and superscript (m) to map the necessary additional information

to their respective mathematical expression. The summarized weighted input is used to

determine with the help of the activation function if a specific threshold Θ is met. The

hidden layer neuron can be equipped with a bias term dampening or lightening (depending

on the bias magnitude and sign) the neuron’s activation. If the bias b ̸= 0 the input for the

activation changes to xwt + b. There are different ways to implement the bias term. One

way is to introduce a constant input signal (per biased layer l), e.g., a neuron
(l−1)
0 that is

connected to the biased output neuron
(l)
j with a respective weight b

(l−1)
0,j . Depending on the

goal and architecture, the bias vectors b(l) can be a learnable parameter or not. Another way

is to configure the activation function in such a way that a implicit general bias is present.

E.g., shifting the activation function left or right has an overall dampening or lightening

effect on the activation behavior of neurons. An activation function centered around zero can

be called unbiased. If a specific threshold θ is met, meaning f(xwt + b) ≥ θ, the activation

23known as dying ReLU problem
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functions result is communicated as the output. Depending on the activation function or

architecture of the network, θ might not be needed. While traditional neural networks use

threshold-based activation, modern neural network architectures, such as those based on

rectified linear units (ReLU), do not explicitly use a threshold parameter. Instead, they rely

on the properties of the activation function itself to determine the firing behavior. With

classical, non-leaky ReLU, e.g., the neuron fires if the input is greater than zero and remains

inactive otherwise, making any θ obsolete.

Output Layer After the activation function of a hidden layer is computed, the value is

transported along the path towards the final output layer. In Figure 5 the output ŷ is on the

right-hand side. The final equation for our example looks like this: f(x⃗, w⃗) = f(⟨x⃗, w⃗⟩) =
f(
∑3

i=1 w
t
i · xi) = ŷ. Lets, e.g., use (1, 2, 3) as our inputs x⃗ and (0.2, 0.4, 0.6) as our weights

w⃗. For our activation function, we use ReLU h(a) = max(0, a).

ŷ = max(0, 1 · 0.2 + 2 · 0.4 + 3 · 0.6)

= max(0, 2.8)

= 2.8
(7)

Summary of the Intuition Compared to the biological counterpart of brain neurons

the artificial input layer mimics a biological neuron receiving stimuli at its dendrites. The

activation potential is then collected at an artificial neuron in the hidden layer, where a

threshold has to be surpassed for the hidden layer neuron to ”fire”. The neuron’s incoming

weights control the magnitude of the activation potential while the strength of the signal that is

directed towards the artificial output neuron is influenced by the choice of activation function,

which could be interpreted as the shape of the axon and synaptic terminal. The construction

of Artificial Neural Networks seems complex. The different notations and representations have

an intimidating effect but when broken down into the essential components, the complexity

breaks down also into repetitive and small calculations. In the next chapter, we will learn

more about these calculations.

3.1.3 Artificial Neural Networks: Expansion to Generality

Based on the examples and intuition we built in the previous Section, we are now going to

introduce a more rigorous notation and notion of artificial neural networks. On top of that,

we are explaining how exactly the weights converge by introducing the concept of training
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and backpropagation of neural networks and the notion of learning in Section 3.1.3. In general,

neural networks can have arbitrary architectures, much like electronic grids. On top of that,

new methods and ideas are added to build even more complex relationships between the

nodes and layers, such as residual connections between layers and neurons. Specifically, we

introduce recurrent neural networks in Section 3.2.2, the self-attention mechanism3.2.2, and

finally the transformers in Section 3.2.3.

Mathematical representation of Artificial Neural Networks As introduced in the

previous section, an artificial neural network can be viewed as a function f : X 7→ Y.

Depending on the intricacies of the network architecture, the function f itself can be a

composition of different functions gi (functions of the g-th layer), which themselves may again

be compositions of hj (functions of the j-th layer) and so on. We can extend the notion

to any finite number L of layers (network depth24), in which layer l computes the following

function:

z(l) = h(l)(W(l)z(l−1)) (8)

where h(l) denotes the activation function associated with layer l, W(l) denotes its weight

matrix. z(0) = x⃗ is the networks input vector and z(L) = ŷ the output vector. Thus, the

reconstructing function f̂(x⃗, θ) = Ŷ , where θ stores the networks parameters such as depth L

and weight matrix W, has the following form:

f̂ = z(L)

= h(L)(W(L)z(L−1))

= h(L)(W(L)h(L−1)(W(L−1)z(L−2)))

= h(L)(W(L)h(L−1)(W(L−1) . . . h(1)(W(1)z(0)) . . .))

(9)

These functions do not necessarily have the same parametrization or constraints. The

compositional nature of arbitrarily complex neural networks leads to graph representations

both mathematically and for practical implementation in the form of computational graphs.

We without further explanation introduced a graph representation of neural networks in

Figure 5, while trying to build an intuitive foundation for the structure of neural networks

and their recursive nature. Taking a look at the smallest unit of a neural network, we observe

that any unit can indeed be represented as a graph. Mathematically, graphs are described as

follows:

24For l≫ 2, these architectures are also called deep neural networks.
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Definition 3.1 (Graph). Let V be a set of vertices and E be a set of edges. Then, a graph

G can be represented as a pair G = (V,E).

Definition 3.2 (Edge). An edge e ∈ E is a tuple e = (u, v) where vertices u, v ∈ V , indicating

that there is a directed path 25 from u to v.

Graphs can have many characteristics and attributes. For representing neural networks, we

define the following:

Definition 3.3 (Weighted Edge). An weight w ∈ R can be introduced by expanding

G = (V,E,w) to a triple, where w : V × V 7→ R.

Definition 3.4 (Vertex Threshold). Furthermore, b : V 7→ R introduces vertex thresholds

(bias), expanding the graph to G = (V,E,w, b).

Additionally, we define a vertex attribute we call state h(v) ∈ R to each vertex V ∈ G.

We can manipulate the state of a vertex in our graph mathematically transforming h(v)

arbitrarily, e.g., h(v)+5, which simply adds 5 to vertex v’s state. In artificial neural networks,

we want information to flow from a specific point of input to a specific point of output. Hence,

we introduce a set vertices and call them inputs which we can connect to specific vertices in

our graph G.

Definition 3.5 (Input). An input to a graph is a subset G ⊂ G∗ = (V ∗, E∗, w∗, b∗), where

V ∗ ∩ V = ∅ and ¬∃ u∗, v∗ ∈ V ∗ : (u∗, v∗) ∈ E∗.

Note that input vertices also have states h(v) ∈ R. However, the state of the input vertices

are concrete instances i of h(v∗) ∈ Inputsignali with i representing, e.g., the sampling

frequency or number of features of the input signal. Input G∗ can be interpreted as one

instance or row of data, that we serve to our neural network as input. By constructing edges

Einput ⊂ E = {(u, v)|u ∈ V ∗, v ∈ V } we can connect the inputs to the neural network graph.

For modeling the output of the neural network, we use the internal state h(v) of nodes in

graph G and define transformation a on it:

Definition 3.6 (Output). h
′
(v) = a(w · h(v) + b),

We call a activation function and h′(v) output of vertex v. The graph representation encap-

sulates arbitrary artificial neural network architectures. As long as the graph design specifies

the defined requirements, we can construct any sub-graph in arbitrary detail and complexity,

25Note: e not being a tuple but a set e = {u, v} would indicate an undirected graph
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and finally connect it into one large complex neural network architecture represented by that

graph. Note that we can use the outputs of sections for inputs of others by simply accessing

the state of the output vertices.

Computational Graph An additional representation of neural networks is the representa-

tion of neural networks by their computation graph. A computation graph is a representation

of an arbitrary mathematical computation as a graph. It is a directed acyclic graph (DAG)

in which nodes correspond to mathematical operations or (bound) variables and edges corre-

spond to the flow of intermediary values between the nodes. The graph structure defines the

order of the computation in terms of the dependencies between the different components.

The graph is a DAG and not a tree, as the result of one operation can be the input of

several continuations (Goldberg, 2017, p. 51). Operations can range from simple arithmetic

operations to more complex functions, such as activation functions like ReLU or a sigmoid

function. Figure 3.1.3 shows a simple example of a computational graph.

a b

c = a + b d = b + 1

e = c · d

Figure 11: Computational Graph. Source: own illustration based on (Olah, 2015)

In Figure 3.1.3 the computation (a + b) · (b + 1) is expressed as a computational graph.

That representation of neural networks with graphs differs from the representation as their

computational graph by a margin. The graph representation represents the structure of

components in a specific neural network from which we can statically access its information,

e.g. by looking at the weights w of the edges or the state h(v) of its vertices at any point in

time. On the other hand, the computational graph represents the flow of data through the

neural network by representing the mathematical operations that occur in the neural network.

A computational graph is a much more detailed version that grants access to specific units and

variables during the flow of data through the neural network. We have yet to introduce the

notion of flow. Since a neural network is essentially a long, complex mathematical expression,
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it can be represented as a computation graph. Dedicated software libraries and APIs, such

as TensorFlow and Pytorch are making the task of constructing such graphs possible, which

is why representing components as nodes in a graph has high practical value.

Flow of Data The flow of data happens during both the forward and backward passes.

A forward pass refers to the evaluation of the network state at time t and corresponding

inputs G∗(t). The forward direction is trivial and occurs when evaluating layer for layer

starting with the weighted input x in the first hidden layer and their neurons and activation

functions. In Definition 3.6, we defined h
′
(v) to be our outputs. The forward flow takes h

′
(v)

and broadcasts it to the nodes v∗ connected to v dependent on the weight w(v, v∗). Each of

the vertices v∗ gathers these incoming values on which then h′(v∗) is computed and again

broadcast to the outgoing paths v∗ is connected to. That procedure stops when the vertices

do not have any outgoing edges, in which case the state of these final vertices is called final

output. The procedure is one feed forward evaluation also called forward pass. Since each

node’s output depends only on itself and on its incoming edges, it is trivial to compute the

outputs of all nodes by traversing the nodes in topological order and computing the output

of each node given the already computed outputs of its predecessors. Based on (Goldberg,

2017, p. 51), in a computational graph of N nodes, we associate each node with an index i

according to their topological ordering.

Definition 3.7 (Forward pass). Let fi be the function computed by node i (e.g., multiplication,

addition, etc.). Let π(i) be the parent nodes of node i, and π−1(i) = {j|i ∈ π(j)} the children
nodes of node i (these are the arguments of fi). Now, υ(i) is the output of node i, that is,

the application of fi to the output values of its arguments π−1(i). For variable and input

nodes, fi is a constant function, and π−1(i) is empty. The computation graph forward pass

computes the values υ(i) for all i = 1, . . . , N .

Algorithm 1 Computation graph forward pass.

for i = 1 to N do
a1, . . . , am ← π−1(i)
υ(i)← fi(υ(a1), . . . , υ(am))

end for

The backward pass introduces the opposite to the forward flow of information and with it

comes the notion of learning. We have not introduced the reason the weights w converge and

why f̂(w) paired with X is a good approximator for Y. Initially, all weights w are initialized

randomly or based on a specific heuristic, e.g., weights from a prior related previously trained

task. Most likely any input xi is not going to reconstruct the respective signal yi very well
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with f̂(X, θ) without some amount of training the parameters θ which include the weights w⃗.

Training a neural network For neural networks to learn, we have to provide an objective

goal. Having a goal presents us with the opportunity to define if our neural network reached

the goal or not, or introduce a concept describing how well or bad a network performed while

trying to reach a specific goal. This goal is called the objective function. As long as we can

mathematically express f̂(x, θ) does something better or worse with respect to a change in

θ, we can base an optimization approach on that expression. There are different ways to

formulate an objective function for different domains of deep learning. In the supervised

learning context that kind of function is commonly known as loss function or cost function.

Machine translation lies within the domain of supervised learning. Objective functions

for, e.g., unsupervised learning serve the same purpose but their construction differs from

objective functions in supervised learning. For unsupervised training, it is common practice

to construct scores which the neural network can improve upon by internalizing behaviour

that is connected to positive conditioning. Supervised learning, on the other hand, means

that we have access to known (assumed to be correct) input-output signal pairings on which

we can test our reconstruction approach to determine how off it is or how well it works. Thus,

we construct objective functions as a measure of model performance for the task at hand

and, to guide the learning process through optimization. The quantification of ’how far of’ or

’how close’ can be mathematically represented in a metric.

Definition 3.8. Let X be a set. A metric on X is a function d : X ×X 7→ R satisfying the

following properties for all x, y, z ∈ X:

1. Non-negativity: d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y.

2. Symmetry: d(x, y) = d(y, x).

3. Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z).

Consequently, we can formulate finding the minimum of a constructed metric as an optimiza-

tion problem.

Definition 3.9 (Loss Function). Given metric d, a loss function is defined as

L : θ 7→ d
(
f̂(θ, x), y

)
, (10)

where (x, y) is the input-output pair and f̂ is a reconstruction approach with parameters θ.

Now, θ∗ = argminθ L(θ) describes finding the minimum of the loss function as our optimization
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problem as a function of θ. We can now introduce ideas and algorithms that optimize the

parameter estimation of a reconstruction model in θ. The optimization procedure that

specifically adjusts the coefficients or weights for artificial neural networks is called training,

where the artificial network learns a specific set of coefficients. We did specifically construct

our problem as a function of θ. In other approaches, such as ensemble learning, not only

the model’s parameters are constructed as an optimization problem but the type of model

(reconstruction approach) itself is part of the optimization process. In that case, we are

looking for f ∗ = argminf L(f) with f ∈ F , where F is the set of functions (reconstruction

approaches) for which f̂(X, θ) = Y. Usually, well studied approaches are compared to one

another with specific heuristics as parameter estimations as a result of such an approach.

The models are either combined into one large ensemble model or the best performing model

is chosen as f̂opt. In the scope of this thesis, however, we are focusing on introducing artificial

neural networks. Other than that, there are optimization approaches that tune parameters,

such as model architecture parameters (i.e., depth, width, specific components (i.e., GRU

units or RNN units)) or, e.g., the learning rate, amount of training epochs, batch size26,

regularization methods 27, and more. On that level, the neural network optimization is called

hyperparameter optimization or hyperparameter tuning and typically involves a strategy to

traverse the space of possible artificial neural network hyperparameters, which are a subset

of θ, to find a set that works better than others for a given problem. The hyperparameter

optimization follows the same loss-function minimization principle. We are not going to take

a look at hyperparameter optimization as it is not within the scope of the thesis. Instead,

we rely on scientifically estimated heuristics that promise good results in a specific scenario.

For training a concrete neural net f̂(w), however, we introduce the so-called backpropagation

algorithm. In supervised learning, after the forward pass the neural network produces an

estimation ŷ. During the backward pass (backward flow of data) the weights of a network are

optimized. In the supervised learning scenario we know for a given input its corresponding

26it is common practice to not update (i.e. train) parameters based on single instances but on batches of
data. The batch size can have an impact on the generalization performance of the trained model. Smaller
batch sizes provide a more noisy estimate of the gradient, as they are based on fewer samples. This noise
can act as a regularizer, helping to prevent overfitting and improving the generalization performance of the
model. However, using very small batch sizes can also introduce instability in the training process, as the
gradient estimates become more sensitive to individual samples. On the other hand, larger batch sizes provide
a smoother estimate of the gradient, which can help converge to a better solution. However, they may also
increase the risk of overfitting, especially when the training data is limited Academy (2023). Using a batch
size n > 1 equals to using the so called stochastic gradient descent (SDG) variant, in which learning the
parameters is based on sampling n times to generate a learning step.

27dropout layers, i.e., probabilistic on/off-switching of neurons. Using dropout layers has the consequence
that the neural network cannot rely on specific neurons to produce an appropriate estimate but instead have
to ’work out’ how to circumvent the single-point-of-failure notion artificially introduced to the architecture.
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true output, the one we try to reconstruct. By determining the difference (distance) between

|y − ŷ|= d(y, ŷ) we can derive the magnitude of the reconstruction error of the current model

and its current weights. Based on the magnitude of the reconstruction error, we adjust the

weights of the neural network to improve the objective function value.

Definition 3.10 (Gradient Descent). Mathematically, this adjustment approach is called

gradient descent and can be represented as follows:

wnew = wold − η · ∇L(wold)

where wold is the vector of old weights, wnew is the vector of updated weights, η is the

parameter controlling the intensity of the nudge (also called learning rate), and ∇L(wold) is

the gradient of the objective function L with respect to the weights wold.

We note the sign of the gradient. Since we want to find smaller values for L, we are moving

in opposite direction of the greatest rate of fastest increase, i.e., the gradient of L. The

backpropagation algorithm that is used in the backward pass does just that. The backward pass

begins by designating a node N with scalar (1×1) output as a loss-node in the computational

graph, which computes |y − ŷ|. Having access to the forward computation up to that node,

the backward computation computes the gradients of the parameters with respect to that

node’s value.

Definition 3.11 (Backward Pass). Denote by d(i) the quantity ∂N
∂i
, i.e., the gradient of

computational graph node N with respect to node i. The backpropagation algorithm is used

to compute the values d(i) for all nodes i.

The backward pass fills a table of values d(1), . . . , d(N) as in Algorithm 2 (Goldberg, 2017, p.

54).

Algorithm 2 Computation graph backward pass (backpropagation).

d(N) = 1 ▷ ∂N
∂N

= 1
for i = N − 1 to 1 do

d(i)←
∑

j∈π(i) d(i) ·
∂fj
∂di

▷ ∂N
∂i

=
∑

j∈π(i)
∂N
∂j
· ∂j
∂i

end for

Based on the chain-rule of differentiation, the quantity ∂fi
∂i

is the partial derivative of fj(π
−1(j))

with respect to argument i ∈ π−1(j).

Definition 3.12 (Chain Rule). The chain rule states that for a composite function f(g(x)),
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the derivative is given by:
d

dx
f (g(x)) = f ′ (g(x)) · g′(x)

where f ′ and g′ denote the derivatives of f and g respectively.

In simple terms, the backpropagation starts from the output and calculates the partial

derivatives of each parameter, expressing it only based on the gradients of the later layers. The

value depends on the function fj and the values υ(a1), . . . , υ(am) = π−1(j) of its arguments,

which were computed in the forward pass. What makes this procedure so outstanding is that

the error is distributed proportionately to the node that caused it, i.e., weights that did not

contribute towards the magnitude of |y − ŷ| stay unchanged while weights that contributed a

significant amount to the |y− ŷ| will change towards the direction that makes them contribute

less in future evaluations proportionally to their contribution. To put it simply, the backward

pass allows the neural network to iterativly learn how its parameters should be adjusted in

order to improve its predictions. In the scheme of the computational graph, we can now

define any node i as long as we can construct a method to calculate the forward value υ(i)

based on the node’s inputs and ∂fi
∂x

for each x ∈ π−1(i). Repeating the forward and backward

pass over and over again on input-output pairs is called training.

Exploding and Vanishing Gradients In Section 3.1.2 we hinted at vanishing gradients.

In deep neural networks with many layers it is common for error gradients to either vanish

(become exceedingly close to 0) or explode (become exceedingly high) as they propagate

through the computational graph Goldberg (2017). When gradients less than 1 are repeatedly

multiplied during backpropagation through many layers of a the neural network, they may

diminish exponentially. Consequently, earlier layers receive increasingly smaller updates

during training, slowing down learning or hindering convergence. For values larger than

one, we have exponential growth on the other hand, leading to exploding gradients. Dealing

with the vanishing gradients problem is an open research question, and usually successful

architectures involve components that address it. Solutions include making networks shallower

or stepwise training, i.e., training specific layers and freezing or fixing their weights before

continuing to train others, batch normalization (zero mean and unit variance for the current

batch of training data) or using specialized neural network components that are designed

to assists gradient flow (e.g. LSTM and GRU architectures for recurrent neural networks

which are introduced in 3.2.2). Dealing with the exploding gradients, on the other hand,

has a simple but very effective solution: norm clipping the gradients whenever they explode,

i.e., if their norm exceeds a given threshold. Let ĝ be the gradients of all parameters in the

network and ||ĝ|| be their L2 norm. (Pascanu et al., 2013) suggest to set: ĝ ← threshold
||ĝ|| · ĝ if
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||ĝ||> threshold.

Summary: Mathematics of Artificial Neural Networks Artificial neural networks are

arbitrarily complex, and often look like black boxes, because they provide little explanatory

insight into the contributions of independent variables in the prediction process (Olden et al.,

2004). Exploring techniques for improving the interpretability and explainability of neural

network models on its own is an area of research. In this section, we learned about what for,

and how artificial neural networks are constructed. We have introduced the core components

and building blocks from which every neural network architecture is derived. On top of that,

we introduced a generalized notion of learning an objective function by looking at how the

network generates output based on input and compares it to a specific reference, and how to

formulate such objectives. Based on two representations, the graph and the computational

graph of a neural network, we are now able to express any neural network architecture we can

think of, and perform arbitrary calculations to estimate parameters for our neural network

that sufficiently solve the task we specify. Finally, we addressed common problems when

working with artificial neural networks. In the next section, we combine these concepts to

introduce the specific neural network architecture, the transformer architecture, that we use

in the experiment of the thesis. We will explore more modern and complex artificial neural

network components that allow us to understand the components used in modern neural

machine translation model architectures.

3.2 Neural Machine Translation

In this section, we will examine the requirements for neural machine translation with respect

to artificial neural networks. In the previous Section 3.1, we have learned the concepts of

learning functions f(θ) = Y based on artificial neural networks and their core components.

However, we will learn that these core components need to be extended to map the complex

relationships between languages. We are going to take a look at the requirements when it

comes to working with natural language and artificial networks. What does the data look

like? How are words and sentences mapped to mathematical expressions so that a formal

optimization problem can be constructed? How can we apply a loss function and metrics on

sequences of words? What kind of components are needed in the artificial neural architecture

to perform the translation task? Finally, we are going to introduce the modern Transformer

architecture in 3.2.3 and, based on the prior components, connect the concepts introduced

into one large model that we are going to utilize for our translation task. Having access to

these elements, we design and propose our experiment in Chapter 4.
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3.2.1 Prerequisites for Machine Translation

Translation Natural Language Processing (NLP) encompasses various tasks, such as

Named Entity Recognition (identifying and categorising entities like names, organisations,

and places), Sentiment Analysis (assessing the tone of text), Text Summarisation, and many

more. One of these tasks is Machine Translation. Translation involves finding a semantically

equivalent set of symbols in another language, allowing the receiver to understand the original

context. The effectiveness of a translation is determined by how closely the semantic meaning

is preserved. For instance, describing a picture with spoken words to a blind person or using

sign language to convey music to a deaf person are forms of translation.

These examples highlight that translation is not limited to written or spoken languages but

involves conveying meaning across different modes of communication. Describing a picture

with spoken words to a deaf person is also a translation but fails to achieve the implicit

goal of adding to the understanding of the observer compared to without the translation. In

computer science, translation typically refers to converting written text from one language

to another while preserving semantic meaning. Table 1 shows an example for a translation

between the language pair German and English, with German as the source language and

English as the target language: We call the symbol-pair source and target language and

Source: German Target: English
Ich I
Haus House
Goldenes Tor Brücke Golden Gate Bridge
Lichtgeschwindigkeit Speed of Light
Das Haus am See ist schön. The house at the lake is beautiful.
Ich kann Peter mit dem Fernglas sehen. I can see Peter who is holding binoculars.
Ich kann Peter mit dem Fernglas sehen. With binoculars I can see Peter.

Table 1: Translations for different units of symbols, words, phrases and sentences from
German to English, and an examples of semantic ambiguity.

specific structured sets of symbols with semantic meaning token which represent a word,

phrase, sentence or document, depending on the window of context (i.e., other symbols that

appear before and after a specific token). The set of tokens is known as the vocabulary

of a language. The vocabulary can be derived from a corpus, i.e., a collection of symbols,

e.g., a text, multiple texts or books, in which different words, phrases and sentences reside,

potentially carrying different semantics with respect to different words, phrases and sentences

in their surrounding context and size of the context. E.g., hitting a bat either means hitting

a baseball-bat with a ball or hitting a animal-bat with something, or something else entirely,

depending on the context. Also, as shown in Table 1, a set of symbols in one language
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does not necessarily have a corresponding set of symbols in another language. The term

Lichtgeschwindigkeit translated to English is represented as a phrase speed of light, whereas

the English phrase speed of light could aswell be represented as the German phrase die

Geschwindigkeit von Licht, which is not an incorrect translation on a semantic level, but

rather an unusual German expression for the term Lichtgeschwindigkeit.

Furthermore, migration between cultures and regions with differing languages creates the

need to name recent inventions, e.g., cell-phones or laptops. These invented words may

differ completely within the very same language with respect to the region a person resides

in. The domain of linguistics makes these and other problems its subject matter. Finding

specific linguistic rules or strategies, i.e., a model to automate a translation between one

or more tokens from one written language to another with the help of a mechanical device

(usually a computer), is called Machine Translation. As described in Chapter 2, known

approaches to Machine Translation can assume the form of either naive rule-based systems,

where words in source and target dictionaries are linked via some kind of look-up table,

or more sophisticated rule-based systems, where specific linguistically derived grammatical

relationships or structures of phrases or sentences are deduced as additional context for a more

sophisticated set of rules that further improve the quality of the translation, or statistical

models that assume probabilities of known phrases based on frequencies derived from corpora,

which maximize the probabilities of the target symbols conditioned on the source symbols, or

neural network based models, which estimate coefficients based on a quantity of examples to

reproduce linguistic behaviour.

Word Representations In section 3.1 we introduced a number of methods and neural

network components working based on calculations on real numbers x ∈ R. The subjects of

machine translation, however, are words and sentences, or textual features related to those,

e.g., character- or word counts. This section introduces the concept of representing words and

sentences as numerical vectors, which is essential for processing them in machine learning

models.

One-Hot-Encoding One simple solution is to represent words and word-based features as

one-hot-encoded vectors. E.g., the most simple feature describes the presence of a word in a

sequence. For a specific vocabulary V of size N a specific word v ∈ V can be represented as

a vector u⃗ ∈ [0, 1]N , where 1 and 0 in the N-dimensional vector indicate a specific word from

the vocabulary V. The representation is sparse but unique. Sentences and documents can

also be represented. E.g., a sentence with ten words results in a vector u⃗ with 1 in at most

ten dimensions and a 0 in the other. Additional information or features can be encoded as
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additional dimensions in u⃗, with 0 and 1 indicating the absence or presence of that particular

feature. By construction, the dimensions of the resulting vector u⃗ are independent from

another. This representation is called one-hot-encoding. A downside of this representation is

the lack of continuous semantic information. While one-hot encoding preserves the categorical

nature of words and allows for easy comparison and manipulation, it does not capture any

inherent relationships or similarities between words and/or features.

Word Embedding That downside is addressed by instead learning dense encodings (feature

embeddings). In dense encodings the dimensionality is reduced to a fixed constant d and a

parameterized model is learned. The model’s goal is to represent similar entities or similar

features as similar vectors. There are two major different approaches to formulate such

models. Supervised (task-specific) pre-training and unsupervised training. The supervised,

task specific training requires a reference, e.g., vectors from a prior task that was completed

satisfactorily. We can either use those vectors for the new task or fine-tune the vectors for our

task as an optimization problem. The more common case is the unsupervised approach. The

distributional hypothesis (Harris, 1954) states: words are similar if they appear in similar

contexts (Goldberg, 2017, p. 118). The different methods for the unsupervised approach

all create supervised training instances in which the goal is to either predict the word from

its context, or predict the context from the word. One fundamental approach to learning

dense representations comes from autoencoders, a type of neural network architecture used

for unsupervised learning. An autoencoder consists of an encoder, which compresses the

input data into a smaller representation (known as the latent space or bottleneck), and

a decoder, which reconstructs the original data from this compressed form. The latent

space is a lower-dimensional, continuous space that encodes important features of the input

data. By reducing dimensionality, the model forces the encoder to capture the most salient

patterns or information about the input, enabling similar inputs to be represented by vectors

close together in this latent space. Using this concept of latent space, we can create dense

embeddings for words or other features, reducing the high-dimensional representations of

inputs while preserving essential relationships. Common methods are Word2Vec (Mikolov

et al., 2013) or GloVe (Pennington et al., 2014). We are briefly and only vaguely introducing

how the Word2Vec method works based on (Bishop & Bishop, 2024, p. 375). The interested

reader will find more detailed information in advanced literature in the domain of information

retrieval, especially. Word2Vec can be characterized as self-supervised. By spanning a context-

window around a specific word in a sentence, the context for the word is presented. Now, by

masking that specific word from a sentence in our data, we can construct a supervised scenario

in which, e.g., a neural network, learns the masked word as its objective. This way, we obtain
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vector estimates for words given a fixed context window 28. Generally, these embeddings

are calculated to represent words in a continuous vector space based on their distributional

properties in large corpora of text data. The new vector space has dimension d, which is a

user-defined constant, and generally is much smaller than the sparse, one-hot-encoding based

on the vocabulary size and additional features (where depending on the language vocabulary

size N ≈ 40.000). Common languages, such as English, French or German, have pre-trained

word embeddings. These word vectors are generally context-independent in that a word

always has the same vector no matter what context it occurs in.

Remarks on Word Representations Once the words are embedded, the cosine similarity

is used to determine the similarity between uworda , vwordb .

Definition 3.13 (Cosine Similarity). The similarity between two vectors u and v expressed

as the angle between the vectors is called the cosine similarity :

cos(θ) =
u · v
∥u∥∥v∥

=

∑n
i=1 uivi√∑n

i=1 u
2
i

√∑n
i=1 v

2
i

(11)

Meaningful29 similarities indicate proper embedding and the preservation of semantic informa-

tion. A result of a proper embbeding is that, e.g., similar words and synonyms can be inferred

with the help of the cosine similarity. By simply calculating the similarity from v to all other

vectors u and presenting the n most close ones, we can access the closely embedded word

space around v. Furthermore, for embeddings generated with Word2Vec analogy-recovery

can been observed30, e.g.,

wking − wman + wwoman ≈ wqueen

or,

wFrance − wParis + wLondon = wEngland

Although this analogy-recovery task is possible due to the nature of the vector space and

the learned word representations, success on a benchmark of analogy task has little to no

practical implication for the suitability of an embedding for a specific task (Goldberg, 2017,

p. 138).

28when the word is given and the context is masked, the method is called skip-grams
29from a subjective human perspective
30the phenomenon is not exclusive to Word2Vec, however Word2Vec is a known example.
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Character- and Subword Encodings Just as we can break down documents into

sentences and analyze the position and role of words within those sentences, we can also

distinguish between the characters within a word and their relative positions. This approach

becomes potentially necessary when dealing with misspellings or words that are not contained

within our assumed vocabulary. Similar to the word embedding techniques, we can also

formulate the same problem on character-level. Instead now, we get a vector for each

letter in the alphabet of the corresponding language. Nevertheless, addressing language at

the character level presents significant difficulties due to the weak correlation between the

structure (characters) and the meaning (syntax, semantics) of language (Goldberg, 2017).

A middle ground between characters and words is breaking up words into meaningful units.

(Sennrich et al., 2016b) propose subword encodings for rare words for languages with complex

morphology or in scenarios where handling rare or out-of-vocabulary words is essential.

Byte Pair Encoding (BPE) (Gage, 1994) is a simple data compression technique

that iteratively replaces the most frequent pair of bytes in a sequence with a single,

unused byte. We adapt this algorithm for word segmentation. Instead of merging

frequent pairs of bytes, we merge characters or character sequences. (Sennrich

et al., 2016b)

BPE captures common prefixes, suffixes, and stems shared units across words, allowing for

more compact and efficient representation of vocabulary. BPE begins with a vocabulary of

individual characters. It then merges the most frequent pair of consecutive characters. The

user defined vocabulary size determines the number of times the process is repeated (Rothman,

2024). The result is a set of merged characters that can be an individual character, subwords, or

words. BPE and the Google’s derivative/implementation SentencePiece (Kudo & Richardson,

2018) have become a standard and baseline in a variety of tasks, including neural machine

translation. The output of the BPE algorithm is a model and a vocabulary. The model

describes the merging operations performed during training and indicates how the text has

to be transformed so it is represented as a so called subworded text, in which words are

eventually seperated into their corresponding subword-units. The vocabulary represents the

atomic units from which text, using that specific BPE model, can be built. The numerical

representation is the subword unit’s position in the BPE vocabulary (sometimes referred

to as (hidden) input ID). Note that this is not the vector representation that satisfies the

dimensions of the model’s neural network architecture. The vector representation for a

specific input token is a learned parameter with respect to a specific linear mapping that

corresponds to the meaning of the word. In other words, finding the specific linear mapping

to represent inputs as vectors is part of the neural network (called the embedding). Once the
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text is tokenized, i.e., turned into its subword representation based on a BPE model, it is

presented to the neural network architecture as its input. Usually, the output of a neural

network prediction is again in tokenized form. To reverse or undo the tokenization, Sennrich

et al. propose applying a specific stream editor operation for filtering and transforming text

(commonly known as sed) where the whitespaces and special characters that separate the

words into their subword units are filtered to restore words from subwords. Alternativley, the

SentencePiece library31 implements a lossless decompression method to revert the subwording

process.

Special Tokens: UNK, EOS, SOS and PAD During the encoding, special sequences

are reserved for specific operations during the training and inference of the neural network.

UNK signifies tokens that are unknown or out of vocabulary, allowing the model to handle

previously unseen or ambiguous input. EOS marks the end of a sequence. Conversely, SOS

denotes the start of a sequence. By incorporating these special sequences into the encoding

scheme, the neural network gains enhanced adaptability, robustness, and efficacy in processing

and generating sequential data, which is important in the context of language translation.

The PAD token is a technical token used to shift sequences in time or fill up space in case it

is required for specific matrix operations. They are specified and designed by the user and are

context-specific. For more complex experiments, researchers may introduce novel tokens to,

e.g., provide additional context to specific vocabulary units or positions in a sentence. One

example of user-specified novel tokens is the introduction of tokens that imply the translation

target when training with multiple source languages. We mentioned this example in the

literature review in Section 2.

Summary: Prerequisites for Machine Translation After applying a specific encoding

to the textual data, we are left with representatives from a vector space (Word2Vec, GloVe)

or a numerical (positional) representation representing specific units (BPE). Depending on

the encoding goal and algorithm, the level of detail may vary between units or a combination

of units representing phrases (e.g., New York(1)), words (e.g., New(1) York(2)), characters

(e.g., N(1) e(2) w(3) Y(4) o(5) r(6) k(7)) or something in between (e.g., New(1) Yo (2) rk(3)), and

even as fine-grained as literal numerical byte-encoding. These units are called tokens, and

the procedure that turns words into tokens is called tokenization. The component within a

larger neural network architecture is usually called the tokenizer. The space in which these

tokens reside from the perspective of the neural network is known as an embedding. Through

31GitHub/SentencePiece https://github.com/google/sentencepiece

https://github.com/google/sentencepiece
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the embedding process, textual data is transformed into a structured numerical format that

conforms to the requirements of the specific neural network architecture, paving the way

for subsequent analysis and mathematical modeling. These units are the representatives of

the textual data that flows back and forth through the artificial neural network. Ultimately,

our goal is to decipher numerical units back into subwords or words to obtain a meaningful

output with respect to our task. Interestingly, the computer never really sees words, only the

numerical representation of specific vocabulary which is contained in a given corpus32. We

will learn more about the process in the subsequent sections.

3.2.2 Neural Network Components for Neural Machine Translation

Figure 12: Schematic of a recurrent neural network. The recurrent connections in the hidden
layer allow information to persist from one input to another. Source: (Pascanu et al., 2013).

Viewing sentences as sequential input signals introduces temporal dependencies. These tempo-

ral dependencies require the introduction of additional artificial neural network components,

namely recurrent neural networks. Recurrent neural networks (RNN) were introduced as a

model in the 1980s by Rumelhart et al., 1986; Elman, 1990; Werbos, 1988 (Pascanu et al.,

2013). Their architecture resembles that of a conventional multilayer perceptron, with the

distinction that it includes time-delayed connections among the hidden units. As depicted

in Figure 12, these connections form a circular path back to the hidden layer xt to serve as

an additional input for that layer in time stepj+1. These links allow the network to preserve

information from previous inputs, thus identifying temporal relationships between events

that may be distant in time — a key feature for effective time series learning (Pascanu et al.,

2013). Werbos phrased it in simpler terms:

[Predictions)]at time t will be more accurate if we can account for what we saw at

earlier times. (Werbos, 1990)

Werbos elaborates the concept in a network diagram shown in Figure 13. Reading the diagram

32Hence the notion of AI learning or understanding language is debatable.
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Figure 13: Generalized network design with time lags. Source: Werbos (1990)

from bottom to top, we observe the influence earlier time steps have on the ones in the future.

The diagram shows the same entire network at three distinct time steps. Three distinct input

signals on the left X(T − 2), X(T − 1), X(T ) produce Ŷ (T − 2), Ŷ (T − 1), Ŷ (T ) respectively

based upon some f(θ) (annotated as entire network). It is shown that previous states of the

network influence both the hidden and the output layers of the future states. The goal is to

control the magnitude of that influence with respect to both the moment of time of a specific

input and input itself. By unrolling the generic representation as depicted in Figure 12 into

the repetitive theme depicted in Figure 13, we see that that a RNN is a deep neural network

that furthermore can be mapped to a large computational graph with somewhat complex

nodes, in which the same parameters are shared across many parts of the computation, and

additional input is added at various layers Goldberg (2017).

Recurrent Neural Networks A generic definition of a recurrent neural network is given

by

Definition 3.14 (Recurrent Neural Network Component). Let ut be an input layer (vector)

and xt be the state for time step t. A recurrent neural network component is defined by

xt = F (xt−1,ut, θ) (12)

where θ is the current neural network parameters (weights). Deconstructing the recurrent

neural network parameter component, we observe:

xt = Wrech(xt−1) +Winh(ut) + b (13)

where Wrec is the recurrent weight matrix constructed by the circular, recurring weighted

paths and b is the bias. The initial input x0 is either set to 0, learned or constructed by the
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user, and h is the hidden layer’s activation function.

In section 3.1.3, we claimed that as long as we can construct a method to calculate the forward

value υ(i) based on the node’s inputs and ∂fi
∂x

for each x ∈ π−1(i), we may introduce any kind

of node to the neural network architecture. The forward pass is trivial and its evaluation is

shown in equation 13. As Werbos notes, backpropagation can be applied to any system with

a well-defined order of calculations. For the backward pass, all we need to do is to create

the unrolled computation graph for a given input sequence, add a loss node to the unrolled

graph, and then use the backward (backpropagation) algorithm to compute the gradients with

respect to that loss. Unrolling the network architecture in this way introduces the derivative

of Werbos of the backpropagation algorithm called backpropagation through time (BTT). BTT

extends the backpropagation algorithm so that it applies to dynamic systems. This allows us

to calculate the derivatives needed for optimizing an iterative analysis procedure, a neural

network with memory, or a control system that maximizes performance over time Werbos

(1990). Figure 14 depicts a more annotated version of 13. Another insightful representation

Figure 14: Unrolling recurrent neural networks in time by creating a copy of the model for
each time step. We denote by xt the hidden state of the network at time t, by ut the input of
the network at time t and by εt the error obtained from the output at time t. Source: (Pascanu
et al., 2013)

is given by (Goldberg, 2017, p.164-166).

Remarks on RNN On their own RNN’s are not able to produce models that solve

f(X, θ) = Y. Rather, RNN’s serve as trainable components in a larger neural network. Also,

the supervision signal is not applied to the RNN directly, but through the larger network.The

final prediction and loss computation are performed by that larger network, and the error is

back-propagated through the RNN. This way, the RNN components learn to encode properties

of the input sequences that are useful for the further prediction task (Goldberg, 2017). One

large drawback is that RNNs error signals tend to vanish or explode due to the recursive
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nature of the component. During backpropagation through time, gradients are multiplied at

each time step as they are propagated backward through the network. If these gradients are

less than 1, they can diminish exponentially as they traverse through numerous time steps.

Conversely, gradients can become exceedingly large during backpropagation through time.

This phenomenon occurs when the gradients are greater than 1, leading to exponential growth

as they propagate backward through the network. We already discussed the consequences and

some possible solutions of vanishing and exploding gradients in section 3.1.3. The overarching

problem has inspired specific architectural refinements for recurrent neural networks that we

introduce in the next section 3.2.2.

Sequence-to-Sequence Currently, we have introduced components that predict yt based

on x0 . . . , xt−1, xt. By varying t between 0 and t, we retrieve a sequential output signal

y = (y0, . . . , yt). A common approach to Neural Machine Translation are RNN based

sequence-to-sequence models 33. Translation, from a probabilistic perspective, aims to

maximize the conditional probability of the target sentence y given the source sentence x:

argmaxy p(y|x). ”In neural machine translation, we fit a parameterized model to maximize

the conditional probability of sentence pairs using a parallel training corpus (input and

output pairs). Once the conditional distribution is learned by a translation model, given a

source sentence a corresponding translation can be generated by searching for the sentence

that maximizes the conditional probability” (Bahdanau et al., 2016). Cho et al. propose a

RNN Encoder–Decoder neural network architecture that is able to encode a variable-length

sequence into a fixed-length vector representation and to decode a given fixed-length vector

representation back into a variable-length sequence. They assume RNN can learn a probability

distribution over a sequence by being trained to predict the next symbol in a sequence. In

that case, we can infer the output at each time step t by the conditional distribution

p(x) =
∏T

t=1 = p(xt|xt−1, . . . , x0) They suggest that from this learned distribution, it is

straightforward to sample a new sequence by sampling a symbol at each time step (Cho et al.,

2014), proposing a valid model to achieve machine translation.

RNN Encoder-Decoder Cho et al. describe a model that calculates p(y1, .., yTy |x1, .., xTx),

where the sequence lengths Ty and Tx do not necessarily have to be of the same size.

Definition 3.15 (RNN:Encoder). The encoder is an RNN that reads each symbol of an

input sequence x sequentially. As it reads each symbol, the hidden state of the RNN changes

33other architectures, e.g., a hybrid of an RNN and a de-convolutional neural network have been proposed
by Kalchbrenner & Blunsom
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according to

h(t) = f(h(t−1), xt), (14)

where f is the activation function.

After reading the end of the sequence (marked by an end-of-sequence symbol), the hidden

state of the encoder RNN is a summary c of the whole input sequence.

Definition 3.16 (RNN:Context Vector). A vector generated from a sequence of hidden

states ht ∈ Rn at time t = 1, . . . , Tx is called context vector

c = q({h(1), . . . , h(Tx)}) (15)

where q is some non-linear function. The context vector can also simply, e.g., be c = h(T ).

The summary c of the input sequence serves as a form of context or additional information

that guides the decoding process. It potentially encapsulates the input sequence’s features

and provides context for generating the output sequence. This conditioning mechanism allows

the decoder to generate output symbols that are influenced by both the input sequence and

the previously generated symbols.

Definition 3.17 (RNN:Decoder). The hidden state at time t is computed by

h(t) = f(h(t−1), yt−1, c) (16)

The decoder is a RNN which is trained to model the output sequence by predicting the next

symbol yt given the hidden state h(t).

p(yt|{yt−1, . . . , y1}, c) = g(yt−1, h(t), c). (17)

Both yt and h(t) at are conditioned on yt−1 and on the summary c of the input sequence. In

other words, the decoder defines a probability over the translation y by decomposing the

joint probability into the ordered conditionals solving the task of predicting the next word

based on the previously predicted words Bahdanau et al. (2016):

p(y) =
T∏
t=1

p(yt, |{y1, . . . , yt−1}, c) (18)
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where y = (y1, . . . , yTy). Bahdanau et al. use a RNN to model the conditional probabilities

T∏
t=1

p(yt, |{y1, . . . , yt−1}, c) = g(yt−1, st, c), (19)

where g is a potentially multi-layered, non-linear function that outputs the probability of yt

and st is the hidden state of the RNN. Without loss of generality, g is often chosen to be a

derivative of the so-called soft max that for all possible symbols j = 1, . . . , K calculates their

probability with respect to each other symbol34.

exp(wjh(t))∑K
j′=1 exp(wj′h(t))

(20)

Figure 15: An illustration of a generic RNN Encoder–Decoder. Source: (Cho et al., 2014)

Figure 15 shows a generic encoder-decoder network as proposed by (Cho et al., 2014). The

input sequence x1, x2, . . . , xT produces some state c which is included as additional input

in the decoding phase. Additionally, the figure schematically points at the influence of

subsequent outputs ytj .

Gated Recurrent Units Furthermore, Cho et al. introduce gated recurrent units (GRU) as

easier to evaluate and analyse than the Long-Short-Term-Memory neural network components.

Long-Short-Term Memory (LSTM) was introduced by Hochreiter & Schmidhuber (1997) to

specifically tackle the problem of the error signal being backpropagated through time either

34the concept is commonly known as a possible solution for calculating the class probabilities for a
multi-class problem
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blowing up or vanishing, as well as to find a solution for RNNs overestimating the influence

of recent inputs versus non recent inputs (hence the notion of memory). By controlling the

flow of gradients, these gated architectures alleviate the vanishing and exploding gradient

problems. To solve the difficulty of capturing and retaining relevant signals over long

sequences, Hochreiter & Schmidhuber (1997) introduced architectures with memory cells that

are designed to retain information over longer time horizons. These memory cells, equipped

with gating mechanisms, enable the network to selectively update and access information

from previous time steps, allowing it to maintain relevant signals over extended sequences.

Additionally, techniques such as skip connections and residual connections facilitate the flow

of information through the network, helping to address the issue of information degradation

over time. Many of the LSTM mechanisms introduced by Hochreiter & Schmidhuber have

revolutionized and inspired the deep learning domain. It is not within the scope of this

thesis to discuss all of them in detail. For further information, we refer to (Hochreiter &

Schmidhuber, 1997) and (Schmidhuber et al., 2011). The more recent GRU achieve a similar

Figure 16: An illustration of the hidden activation function proposed by Cho et al. (2014).
The update gate z selects whether the hidden state is to be updated with a new hidden state
h̃. The reset gate r decides whether the previous hidden state is ignored. Source: (Cho et al.,
2014)

feat. Gating units regulate the flow of information and gradients, allowing the network to

selectively update or retain relevant information over time. Cho et al. (2014) called their gate

the ”Hidden Unit that Adaptively Remembers and Forgets” which was later adapted as GRU.

GRU, illustrated in Figure 16, feature two gates: the reset gate (r) and the update gate (z).

Cho et al. describe that when the reset gate is close to zero (see Equation ??), the hidden

state is forced to ignore the previous hidden state and reset with the current input only. This

effectively allows the hidden state to drop any information that is found to be irrelevant

later in the future, thus, allowing a more compact representation. On the other hand, the

update gate controls how much information from the previous hidden state will carry over

to the current hidden state. This acts similarly to the memory cell in the LSTM network
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and helps the RNN to remember long-term information. These gating units counteract the

exploding/vanishing gradient problem and accommodate the hidden units of a layerj.

Alignment by Attention Inspired by (Cho et al., 2014), Bahdanau et al. (2016) develop

a neural network architecture that jointly learns to align and translate. Bahdanau et al.

introduce a novel way to condition on the context vector c. Instead of conditioning on c as a

whole, the probability is conditioned on one distinct ci for each target word yi. The ci depend

on a sequence of annotations (h1, . . . , hTx). The annotations contain information about the

whole input sequence. The new distinct context vector ci is calculated as a weighted sum of

these annotations hi:

ci =
Tx∑
j=1

αijhi (21)

The weight αij of each annotation is computed by:

αij =
exp(eij)∑Tx

k=1 exp(eik)
, (22)

where eij = a(s(i−1), hj). The state at t of the RNN is denoted by s(t).

Definition 3.18 (Alignment Model). Scores eij that indicate how well the inputs around

position j and the output at position i match are called alignment model.

Intuitively, this implements a mechanism of attention in the decoder. (Bahdanau

et al., 2016)

Summary: Neural Network Components for Neural Machine Translation In

section 3.2.2 we have introduced the necessary core components for artificial neural network

based machine translation. We highlighted these components by introducing the recurrent

neural network component (RNN) in conjunction with sequence-to-sequence modeling. We

introduced the encoder-decoder structure of the modeling approach, where a encoder reads

input and summarizes, and the decoder takes the summary to produce a translation. We

learned about important subtleties when it comes to learning with RNNs and the vanishing

gradient problem, and how to counteract it with gated units. Finally, we introduced the

concept of alignment and attention between input and output sequences that we put in place

to achieve a more rich connection between the source and target sequence.



57

3.2.3 Neural Machine Translation with Transformers

The introduction of the alignment model to the encoder-decoder architecture sparked re-

searchers at Google to come up with an architecture that combines the introduced compo-

nents for sequence to sequence modeling into a novel architecture. In their paper Atten-

tion Is All You Need (2017) they introduce the so called Transformer. In this section, we

are going to dive into the components of the Transformer architecture. Furthermore, we

document a paradigm shift that replaces old components. Based on the previous sections,

we have a very good conceptual understanding of key components needed for the machine

translation task. This section answers the questions, what the Transformer architecture is

and why it is superior to RNN based architectures.

The Transformer Architecture Crucial about the Transformer is that it dispenses of

recurrence entirely, which increases the training efficiency enormously. In other models, e.g.,

models with RNN components, the sequential computation of attention based on the hidden

states h(t) based on h(t)−1 completely preclude parallelization. Transformers, however, intro-

duce multi-head self-attention via so called scaled dot-product attention. Today, Transformers

based on attention have completely superseded RNNs in almost all applications (Bishop &

Bishop, 2024, p.358). In Section 3.2.2 we introduced the concept of an alignment model

eij that relies on both input and output sequences by generating context vector ci based

on attention weights αij and their annotations hi. Novel at the time of publishing, the

Transformer architecture, to draw global dependencies between input and output, instead

uses the so-called self-attention (sometimes also called intra-attention) without using any

alignment model between input and output sequence. Figure 17 shows the components used

in their neural network architecture. The left side of Figure 17 depicts the encoder block

of the architecture, the right side the decoder block. All components are introduced in

the subsequent paragraphs. Note that the headline of the paragraph indicates the specific

component of investigation. Components being part of both the decoder and encoder stack

are indicated as such. Furthermore, a color schema indicates mentions of components or

their potential synonyms. The components include feed forward network components ( blue ),

multi-head attention components ( orange ), normalization components ( yellow ), embed-

ding components ( red ), a linear projection component ( purple ) and a softmax component

( green ). The architecture also utilizes residual connections between specific components.

Transformer: Encoder+Decoder - Input/Output Embedding As mentioned in

section 3.2.1, the inputs that are either vector representations of words or IDs with respect

to their encoding vocabulary have to be mapped to a model-conforming vector. The Trans-
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Figure 17: The Transformer - model architecture. Source Vaswani et al. (2017)

former’s dmodel parameter specifies the embedding vector dimension (default 35 dmodel = 512).

The mapping itself is part of the neural network’s learnable parameters. The resulting

dmodel dimensional encoder and decoder embedding spaces encapsulate the learned linguistic

nuances and relations between the encoder input tokens with respect to the decoder tokens.

Transformer: Encoder+Decoder - Positional Encoding Since the Transformer is not

using recurrent neural networks, the time component of the input sequence is not naturally

encoded by the choice of neural network architecture. Instead, an additional vector is

introduced encoding the relative position of the current word in the sequence. The positional

encoding procedure is the same for input and output sequences. In Figure 17, the positional

encoding is indicated by the circle which encapsulates a sinoid curve positioned above the

35defaults to the Transformer architecture as proposed by (Vaswani et al., 2017)
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input and output embedding . The positional encoding vector has the same dimension as

the embedding space. These positional encoding vectors follow a specific pattern that the

model learns, which helps it determine the position of each word, or the distance between

different words in the sequence.

Figure 18: To give the model a sense of the order of the words, we add positional encoding
vectors. Source: (Alammar, 2018)

The positional encoding function (Vaswani et al., 2017) propose is:

Definition 3.19 (Positional Encoding). A Positional encoding is a function used to embed

positional information in order to differentiate between different positions in a sequence.

PE(pos,2i) = sin

(
pos

n
2i
d

)
(23)

PE(pos,2i+1) = cos

(
pos

n
2i
d

)
, (24)

where in the context of the Transformer architecture pos = 0, . . . , XT is the position (zero-

based index) of the input token from sequence X, d = dmodel the dimension of the embedding

space, and i corresponds to the i-th embedding dimension. n is a fixed scalar defined by the

user (default: 10,000).

In other words, for each i of the d embedding dimensions we calculate a positional encoding

based on the position of the current token within the sequence, resulting in an 1×d positional

encoding vector. By construction, even i are encoded with a sine and odd i are encoded

with a cosine. Vaswani et al. hypothesize that by using sinusoidal functions it may allow

the model to extrapolate to sequence lengths longer than the ones encountered during

training (Vaswani et al., 2017). Another advantage is, that the sine and cosine functions are

constrained to [−1, 1], keeping the values of the positional encoding matrix in a normalized

range. Furthermore, as the sinusoid for each position is different by construction, we obtain

a unique way of encoding each position of a sequence. Consequently, we now have a way

of measuring or quantifying the similarity between different positions, hence enabling us
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to encode the relative positions of words using these mappings. Note that the positional

encoding Vaswani et al. introduce is one of many ways to achieve a similar feat. Now, we shift

our focus towards the model’s attention mechanism. The attention mechanism conceptually

replaces the context vector c and alignment model eij of the RNNs sequence-to-sequence

model.

Transformer: Encoder+Decoder The encoder and decoder block are composed of a

stack of N (default N = 6) identical layers. In the encoder stack, each layer has two sub-layers:

the multi head attention layer and the feed forward layer . In the decoder stack, each layer

consists of three sub-layers: two multi head attention layers and the feed forward layer .

The decoder is conditioned on the output of the encoder by ingesting the final encoder hidden

state partially into its second multi head attention layer . First, we inspect the Multi Head

Attention.

Transformer: Encoder+Decoder - Multi Head Attention The attention mechanism

Transformers use can be viewed as a richer form of embedding in which a given vector is

mapped to a location that depends on all other vectors in the sequence simultaneously (Bishop

& Bishop, 2024). Previously, with RNNs, we were able to grasp the context of a sentence by

evaluating states sequentially, and representing the context as some context vector c. Now,

instead, we look at all positions of the sequence and the corresponding vectors simultaneously,

and encode additional information accordingly to each vector in sequence independent from

time and state. In a sense, we assume an additional encoding step to embed our already

embedded words once more, enabling more nuanced meanings for words that, e.g., have

ambiguous meaning, enabling differentiation based on the embeddings of the whole sequence.

On top of that, networks based on RNNs show weak support for longer sequences and large

contexts. Vaswani et al. assume that the additional embedding space and assigning a vector

for each token in that space counteracts relying on one context vector c for one whole sequence.

To describe their mechanism, Vaswani et al. borrow both terminology and methodology from

the information retrieval domain. They describe their attention as mapping a query and a

set of key-value pairs to an output. For each tokeni in a sequence, we create a Query vector,

a Key vector, and a Value vector based on that token. These vectors can be interpreted as

their information retrieval counterpart. For example, when you search for videos on YouTube,

the search engine will map your query (text in the search bar) against a set of keys (video

title, description, etc.) associated with candidate videos in their database, then present the

best matched videos (values). Section 3.2.2 introduces a similar notion. Annotations h can

be understood as our values that correspond to a potential match candidate. hi relevance is
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Figure 19: Attention consists of several attention layers running in parallel. Source:(Vaswani
et al., 2017)

indicated by weighting with αi to obtain context vector ci. In other words αi is the probability

of hi being relevant for the output sequence in the RNN model. Computationally, calculating

this α is expensive. For sequences of size xTx and yTy , we have to evaluate the whole artificial

neural network xTx · yTy times to find all attention scores eij. A more efficient way is to first

project state s and annotations h onto a common space, then choose a similarity measure

(metric) as the attention score (dontloo, 2019).

eij = f(si)g(hj)
T (25)

Equation 25 is essentially the approach proposed by (Vaswani et al., 2017), where the two

linear projection vectors are called query (for decoder) and key (for encoder) and the similarity

measure is given by their dot product. But why dot product? We already introduced another

measure of similarity, the cosine similarity for vectors in equation 3.13. The cosine similarity

expresses the angle between two vectors. Cosine similarity ranges from [−1, 1], where 1

indicates that the vectors are pointing in the same direction, −1 indicates that they are

pointing in opposite directions, and 0 indicates orthogonality (perpendicularity) between the

vectors. The dot product of two vectors computes the similarity by quantifying how much

two vectors point in the same direction.

Definition 3.20 (Dot Product). The dot product of two vectors a = (a1, a2, · · · , an) and
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Figure 20: Scaled Dot-Product Attention. Source:Vaswani et al. (2017)

b = (b1, b2, · · · , bn), specified with respect to an orthonormal basis, is defined as

a · b = a1 · b1 + a2 · b2 + . . .+ an · bn =
n∑

i=1

ai · bi (26)

The dot product is a measure of the projection of one vector onto the other that is not

irrespective of magnitude, i.e., preserving more information than the cosine similarity.

Transformer: Multi Head Attention - Scaled Dot Product Attention Vaswani

et al. call their attention mechanism scaled dot product attention. They describe any input

can be represented as query and key with dimension dkey = dquery and value of dimension

dvalue. The dimension usually is smaller than the dimension of dmodel (dimension of the input

embedding). Figure 19 has a 3-D depth to it, indicating that h (default=8) attention layers

run in parallel. Vaswani et al. report finding it beneficial to linearly project the queries,

keys and values h times with different, learned linear projections to dkey, dkey and dquery

dimensions, respectively, where dkey and dvalue are much smaller than dmodel. As a heuristic

they propose dkey = dvalue =
dmodel

h
. Important to note is that key, value and query are vectors

that are representations of the input encoding by some linear transformation:

Key = xi ×WK (27)

Query = xi ×WQ (28)

V alue = xi ×WV (29)

WK ∈ Rdmodel×dkey ,WV ∈ Rdmodel×dvalue, and WQ ∈ Rdmodel×dvalue, the linear projection
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matrices , are learned in the neural network. The matrices and their interplay represent a

compatibility function. The compatibility of a token with regard to the rest of a sequence is

a vector derived from computing the dot products of the Query (current token) with all Keys

(rest of the sequence), divided by
√

dkey ( scale ), and apply a softmax function (see 20) to

obtain the compatibility weights of the query with all possible keys. The vector normalization

with 1√
dkey

is believed to lead to better control over the magnitude of gradients with respect

to the softmax Vaswani et al. (2017). The above describes the left track of Figure 20. The

output of the attention component is computed as a weighted sum of the Values, where

the weight assigned to each Value is computed by the compatibility function of the query

with the corresponding key, that we just described. This describes the right track of Figure

20. As Figure 19 implies, the scaled dot-product attention is calculated in parallel for h

attention heads and different estimates for the linear projection matrices each yielding a dvalue

dimensional output with attention scores. Intuitively, multiple attention heads allow for at-

tending to parts of the sequence differently (e.g., longer-term dependencies versus shorter-term

dependencies). But the feed-forward layer is not expecting h matrices – it is expecting a single

matrix (a vector for each word). Therefore, a final concatenation layer is used to concat the

attention scores. Using another learnable projection matrix Woutput to linearly project the

output back into RxTx×dmodel (or RyTy×dmodel , depending on the position of the attention layer

in the overall architecture). Two similar multi-head attention components can be found

in the decoder layer of the artificial neural network on the right in Figure 17. One com-

ponent is called masked multi-head attention and the other simply multi-head attention .

Noteworthy about the second (upper) multi-head attention layer in the decoder is that the

encoder layer’s output is the input for that attention layer (Encoder-Decoder attention).

That mechanism established itself as the so-called Cross-attention and allows the model to

consider information from different parts of the input sequence while generating the output

sequence. Unlike self-attention, which focuses within the same sequence, cross-attention

enables interactions between the input and output sequences. Here, Key and Value are

computed as projections from the encoder output. The Query projection comes from the

decoder input that was first directed through the masked multi-head attention layer and the

layer normalization.

Transformer: Decoder - Masked Multi Attention Head What do we mean by

masking and what is the purpose of it? In terms of connectivity, the encoder is fully

transparent and connected to the decoder, leading to proper conditioning on all encoder

inputs at all times. During training, we inform the decoder what the complete target sequence

looks like by handing the true target sequence to it as its input - shifted to the right by one
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position. Therefore, while predicting a word at a specific position, the decoder has available

to it the target words preceding that word as well as the target words following that word.

This allows the decoder to cheat by using target words from future time steps as additional

context Doshi (2021). However, to preserve the auto-regressive property, we must not have

access to the model target, i.e., the next word in the sequence. In other words, we need

to hide future decoder input tokens since they give away the answer to our problem at the

current step. We got rid of the time component all together and we are presenting the whole

target sequence at once to the decoder. Now, in combination with the shifting, masking is the

mechanism that achieves to hide these future tokens. The masked elements which correspond

to illegal connections are set to negative infinity, so that softmax turns those values to zero

when calculating their attention score.

Transformer: Encoder+Decoder - Feed Forward Neural Network In both the

encoder and decoder layer there is a feed forward neural network . On the encoder side, before

directing the encoder’s output into the decoder multi-head attention layer , the outputs of

the self-attention layer are fed to a fully connected feed-forward neural network consisting

of two layers with ReLU activation functions. In Vaswani et al. specific architecture, the

network depth is 2 and its width, the amount of neurons in each hidden layer, is 2048. The

input and output vector of the feed-forward neural network has dimension dmodel. The same

architecture with different weights can be found on the decoder side.

Transformer: Decoder - Linear Projection Layer After the feedforward layer , a

layer normalization takes place, from which the decoder stack finally outputs a vector

of floats. Now, we want to derive the next word of a sequence. We borrow the same

linear projection concept introduced in the attention mechanism. By linear transforming

the output vector into a 1× vocab size dimensional vector, called logit vector, we obtain logit

values for each entry in our vocabulary.

Transformer: Decoder - Softmax The final Softmax layer of the Transformer takes

these logits and translates them via a softmax function into probabilities. Now, we have a

probability distribution over our vocabulary, from which we can sample our next word. From

here on out, we can choose to always get the most probable word resulting in deterministic

predictions, or we choose to randomly sample from our distribution in any other way we

specify.
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Figure 21: The Vector produced as the output of the decoder stack turned into probabilities.
Source: (Alammar, 2018)

Transformer: Encoder+Decoder - Residual Connections The last component

left to introduce is the residual connection. In Figure 17 we can find them in the en-

coder side indicated by the arrow that flows from before the multi-head attention to

the normalization layer , and again after that before the feed forward layer to the next

normalization layer . The same type of residual connections can be found on the decoder

side, respectively. These residual connections preserve the inputs, i.e., they are identity

preserving components. With the help of residual connections the layers in the neural network

architecture can perform arbitrary operations and permutations on the input x without the

need of preserving its identity, because we connect the output of those arbitrary operations

back together with its identity. A residual connection changes a components mapping from

f(x) = y = h(x) into

f(x) + x = y+ x = h(x), (30)

where f in this context is some neural network component applied to x and x is the residually

connected identity. The residual block h(x) represents the desired mapping. This operation

is only valid if the dimensions of x and f(x) are the same. Its common for neural network

architectures to introduce manipulations to the signal that also change the dimensionality of

that signal. To counteract these changes, we introduce linear projection Ws

f(x, {Wi}) +Wsx = y+Wsx (31)

The residual connections remind the representation of what the original state was. Intuitively,

we guarantee that the contextual representations of the input tokens represent the original

input tokens (Libovický, 2022). Another task of the residual connections is to help mitigating

the vanishing gradient problem through residual learning (He et al., 2015). Without the

residual connections, a large part of the training signal can get lost during back-propagation.
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The summation operations of residual connections form a path in the computation graphs

where the gradient does not get lost. (He et al., 2016) show for a residual block harbouring a

residual connection:

h(x) = f(x) + x

When computing the derivative of the loss function L with respect to the input x of the

residual block h:
∂L

∂x
=

∂L

∂h

∂h

∂x

Using the chain rule we observe:

=
∂L

∂h

(
∂f

∂x
+

∂x

∂x

)
Since ∂x

∂x
= 1, the equation simplifies to:

=
∂L

∂h

∂f

∂x
+

∂L

∂h
(32)

The result from Eq.32 indicate that ∂L
∂x

can be decomposed into two additive terms:

1. ∂L
∂h

∂f
∂x

represents the gradient of the loss propagated through the residual block, i.e.,

through the weight layers.

2. ∂L
∂h

represents the direct propagation of the gradient through the identity connection,

i.e., directly without concerning any weight layers.

In summary the residual connections counteract the problem of vanishing gradients, which

when addressed has proven to produce better results in the context of deep neural networks

in general. Additionally, the computational cost of the residual connection breaks down

to a simple addition, which is easy to realize in both forward and backward pass of the

computational graph. (He et al., 2016) and others show that empirically residual connection

greatly improve the capabilities of neural networks in several applications. (Vaswani et al.,

2017) imply that the Transformer architecture and neural machine translation is one of them.

Transformer: Inference But how exactly does the Transformer learn to map between

inputs and outputs? How can it predict a sequence based on some input sequence? First of all,

we need to distinguish the training procedure from the inference procedure as they are different.

At inference, in the beginning at t0 the predicted output sequence is empty ([]). To populate the

output sequence, we need to provide context to the Transformer. We initiate context on both

the encoder and decoder side. On the decoder side, we initiate the first token as the SOS (start
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of sentence) token at t0. The SOS token ID is embedded by the Output Embedding , onto it

is added the positional encoding vector and then processed in the decoder stack accordingly.

Here, in the decoder block, the decoder context meets the encoder context. For the encoder

context, we initiate the whole input sequence which is fully transparent to the model already at

t0. At t0, the whole input sequence is processed by the whole encoder stack to produce what is

often referred as the final encoder hidden states. These states are of dimension 1×Tx×dmodel,

where the first dimension, e.g., 1 denotes one single sequence, Tx denotes the length of that

sequence and dmodel the embedding dimension. In other words, all encoder hidden vectors

based on the complete input sequence are used to condition the decoder. Now, with the initial

context from the decoder conditioned on the final encoder hidden states, we can predict a

probable first token based on the decoder final hidden state. Once we obtain the first predicted

token ID by applying the linear mapping (also referred to as language modeling head) and

the Softmax layer , we start populating the output sequence. So now, in addition to the

initial SOS token ID, the new output sequence is used as context that is given to the decoder

stack. The same encoder hidden state vectors are re-used to generate outputs populating

the output sequence autoregressively until the EOS token ID is predicted, which stops the

prediction process for that specific sequence. The final decoder hidden state vectors, on the

other hand, grow successively from 1× 1× dmodel to 1× Ty × dmodel, where Ty denotes the

length of the output sequence. Finally, since the IDs correspond to entries in our vocabulary

we can reconstruct a word representation for the generated output sequence.

Transformer: Training Training with the Transformer does not work exactly the same.

The training procedure requires both input sequence and the corresponding output sequence

(also called labels). Both source and target sequence are tokenized into their token ID

representation based on the respective vocabulary. However, before being provided as

context to the decoder block the output sequence is shifted by one position to the right

by prepending a decoder SOS token ID. The calculation of the final encoder hidden state

is identical to the calculation at inference. But now, instead of iteratively populating the

output sequence, the Transformer model directly generates the final decoder hidden state

with 1× Ty × dmodel based on the provided context. To optimize the Transformer parameters

the discrepancy between the predicted tokens and the true tokens is calculated based on the

specified loss function. The loss function for comparing source to target translation (and

other classification tasks) usually is the cross-entropy loss over the entire sequence. The

cross-entropy penalizes probability distributions that do not match with the true label, i.e.,

the less mass of the softmax distribution is given to the true label the higher the penalty. That

cross-entropy penalty is calculated for each predicted token and its true label. The sequence
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cross-entropy’s mean indicates how far off or close the predicted sequence to the real sequence

is. Finally, the error is back-propagated as introduced in Section 3.1.3 and the network’s

weights are adjusted accordingly. The whole training procedure is characterized as teacher

forcing. Looking at Figure 17, the only components that are not trainable are the positional

encoding vector, the Add & Norm layer, the residual connections and the Softmax layer.

All other components in the Transformer are either some kind of linear projection matrix

( Multi-Head Attention , Input/Output Embedding , Linear Projection Layer ) or a neural

network sublayer ( Feed Forward Layer ) and therefore trainable parameters.

Summary: Transformer In section 3.2.3, we learned about the Transformer architecture

and its benefits over RNN based sequence to sequence models. The Transformer greatly

enhances parallelization by getting rid of the dependency of network states. Additionally,

all computations in the Transformer can further be undertaken on tensor-level, meaning

training can be conducted on whole batches of input sequences at once, further improving

efficiency. Above all, the multi-head self-attention mechanism via the dot product leads to

richer encoding of contextual and semantic information that improve the quality of predictions

with the Transformer architecture versus RNN and other approaches. In the next section, we

are going to explore how we are utilizing the Transformer architecture for our translation

task.
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4 Experiment - Impact of Data Availability for the

Pivoting Strategy in Low-Resource Scenarios

Having access to the components we previously introduced, we now propose an experiment to

specifically gain insights in the dependency between data availability and translation quality

for the pivoting strategy in a selected low-resource scenario. To conduct an experiment,

we make use of the concepts introduced previously by (Kim et al., 2019) and (Mhaskar &

Bhattacharyya, 2021). Additionally, we are going to introduce sampling fractions of the

pivoting resource, to investigate the dependency of the amount of additional data a model is

trained on against its translation quality. There are multiple factors of influence to consider.

The number of language pairs between

1. source-pivot

2. pivot-target

3. source-target

by repeatedly training the same architecture (including hyperparameters) on multiple sample

sizes, a clear dependency may become visible, helping to identify specific numeric thresholds

for specific qualities for the translation task. We specifically test the hypothesis of larger

source-pivot and pivot-target corpora resulting in better translation qualities, as the pivot

language is the only variable factor when considering a source-target translation using the

pivot strategy. The low-resource language pair, on the other hand, is the fixed component.

By introducing artificial data deficiency between source-pivot and pivot-target, we may

uncover latent importance and requirements that potentially change the selection of the

pivoting language based on the availability of data between the pairs. We use two base

lines to compare our approach to. Firstly, we train a benchmark model on the WMT19 36

data. The WMT in 2019 introduced a French-German and German-French news translation

task whose test set will be used for evaluating and comparing our models internally and

externally. For the WMT19 model, we do not use any pivot strategy and are not restricting

the language pair resources to 100,000 sentence pairs. Instead, the WMT19 data consists of

about 10 million (9,589,357) sentences between French and German from different corpora 37.

Also, we choose hyperparameters which are suitable for non-low-resource scenarios, i.e., the

36The Workshop on Machine Translation (WMT) is the main event for machine translation and machine
translation research. The conference is held annually in connection with larger conferences on natural language
processing.

37commoncrawl, bicleaner07, dev08 14, europarl-v7
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default parametrization as proposed by (Vaswani et al., 2017). The resulting model described

Parameter WMT19 Transformer Model
encoder type transformer
decoder type transformer

position encoding true
enc layers 6
dec layers 6
heads 8

hidden size 512
word vec size 512
transformer ff 2048

dropout 0.1
dropout steps [0]

attention dropout [0.1]

Table 2: WMT19 Transformer Model Configuration

in Table 2 can be regarded as an strong baseline or upper-bound baseline. It resembles a

model that is not constrained by limited language resources. Secondly, we use the plain

source-target translation model as a lower-bound baseline, and assume a larger pivot corpus

leads to better translation quality. The plain source-target model is trained on 100,000

sentence pairs only, to emulate the low-resource scenario in which no other exploit is utilized

to improve the translation quality. The resulting source-target model can be understood as

the lower-limit baseline. We adapt configuration parameters that are heuristically suited for

low-resource scenarios, as described further down in the Practical Experiment Considerations

paragraph. We compare these baselines to our pivot approach, which is are inspired and

adapted from (Kim et al., 2019) and (Mhaskar & Bhattacharyya, 2021). A similar approach

for the cascading pivot strategy has been conducted for statistical machine translation systems

by (Paul et al., 2009) where a comparison is made between the optimal pivot language for a

10k and 80k source-pivot and pivot-target language pair, focusing on language selection and

not selection by data availability. Their results show that 75.5% of the choices for an optimal

pivot language do not change when increasing the amount from 10k to 80k sentence pairs,

hinting at the possibility that rather than being a high resource source of data, instead the

pivot strategy succeeds based on other circumstances, such as linguistic similarity between

source-pivot or pivot-target language. To be precise, we want to investigate the impact of or

point of diminishing returns for changes in data availability when pre-training with a pivot

language.
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Transfer Learning A large-scale model that can subsequently be adapted to solve multiple

different tasks is known as a foundation model (Bishop & Bishop, 2024). Central to our

approach is the theory of transfer learning, where knowledge gained from a general task

(pre-training) enhances a model’s adaptability to a specific task, e.g., translation. The

theoretical foundation of transfer learning is rooted in the idea that models trained on one

task can capture general features and representations that are transferable to related tasks.

In the context of machine translation, this means that a model pre-trained on a diverse

dataset containing multilingual content can acquire valuable linguistic knowledge applicable

to various language pairs. Kim et al. (2019) and Mhaskar & Bhattacharyya (2021) utilize

transfer learning by initially training specific components of the final model on data that

are intermediate and related to the target task, before introducing the final task and its

respective data. We specifically design the experiment to make use of the notion of transfer

learning. By first training a transformer model between source and pivot languages, we

obtain an encoder-decoder model where the encoder trained to encode the source language.

By freezing the weights of the encoder and only training the decoder in the next transformer

model between pivot and target language, we guarantee that the encoder does not unlearn

encoding the source language while being presented with the task to encode the pivot language.

Without freezing the encoder component, the model is exposed to (catastrophical) forgetting,

and is likely perform worse the more pivot data it is trained on (Kim et al., 2019). The

second stage of the training produces a decoder that decodes the target language based on

pseudo-source encodings. The pseudo-source encodings are furthermore the result of the BPE

based on a shared vocabulary between source and pivot language. By using shared subword

units as tokens for the decoder, we allow the encoder-decoder training in the second step

(pivot-target) to perceive similar encodings with respect to the source language. Finally, we

retrieve the frozen encoder and decoder from the second transformer model and assemble

a third transformer model. The task of this third transformer model is the source-target

translation, i.e., training to translate between the low-resource language pair. We hypothesize

that by utilizing the notion of transfer learning the translation quality improves above the

lower-bound baseline. We furthermore hypothesize that an increasing size of pivot resource

yields diminishing returns. To test our hypothesis, we build respective BPEs and conduct

the training procedure as described above for different fractions of the data:

We use resource limitations (fewer than 800,000 pivot pairings) that are representative for out

of simulation scenarios. The resource between source and target is fixed at 100,000 sentence

pairs. For the first and second stage, it is important to note that the pivot BPE encodings are

calculated on the corresponding level of resource. In other words, even thought we may have
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Samples Description
0 The baseline in which no pivot language is used

50,000 Pivot resources weaker than those of low-resource pair
100,000 Equal pivot resources
200,000 Canonical intermediate step
400,000 Medium resources for pivot pairings
800,000 Large resources for pivot pairings

Table 3: Sample sizes and their corresponding descriptions for pivot language resources

a corpus of 3 million English and 2 million French sentences we only use, e.g., 50,000 source

sentences + 50,000 pivot sentences from which the BPE models and vocabulary for stage 1

are derived. Stage 3 always uses a BPE model based on 100,000 sentence pairs between source

and target language. We argue that artificially limiting access to resources better simulates a

realistic low-resource scenario and enhances the robustness of our findings. Consequently,

increasing the pivot resource sample size is not simply controlled by using checkpoints at

specific points in training and adding additional data, but by completely training each model

based on its respective BPE from scratch. The training procedure itself is deterministic

by specifying a random seeds, using the same initialization parameters for the transformer

architecture parameters and other training parameters, such as the learning rate and so on.

In doing so, we guarantee comparability across experiment settings and reproducibility for

potential future work.

Comparison Now, the third, final stage is to compare the results of fine-tuning the source

to target translation task between the pivot 50k, 100k, 200k, 400k and 800k. By varying the

amount of data on which the first and second stage models are trained, we may observe the

relevance of pre-training for the source and target translation task. We evaluate the quality

of each model based on the BLEU, TER and chrF score, which are introduced after the

upcoming paragraph. The WMT provides the industry standard testsets on which translation

tasks can be benchmarked and compared against results of other streams of research and

their approaches.

Practical Experiment Considerations The procedural framework, described in the

following section, outlines the steps taken to achieve our research objectives. The model

architecture for our experiment is not identical to (Mhaskar & Bhattacharyya, 2021) and

(Kim et al., 2019). The authors do not work specifically on low-resource scenarios. Araabi &

Monz (2020) shows using smaller and more shallow models yield better results in scenarios

where data is not abundant. Araabi & Monz hypothesize that larger architectures and



73

therefore a larger amount of weights generally need more training iterations to converge.

Based on Lankford & Afli’s findings, using an unigram subword model instead of BPE has

no significant impact on the translation results in low-resource scenarios, ergo BPE is used

as the subword model for our experiment. Lankford & Afli (2021) furthermore suggest a

vocabulary size of 16k over vocabulary sizes of 8k and 32k. The hypotheses between Araabi

& Monz, van Biljon et al. (2020) and Lankford & Afli (2021) are consistent with each other

and suggest that smaller and shallower transformer architectures, combined with BPE, may

yield more promising results in low-resource scenarios. Heuristically motivated, we employ a

more shallow 3-layer (default: 6-layer) base transformer described in (Vaswani et al., 2017)

for all experiments. The batch size is set to 2,048 tokens per batch Araabi & Monz (2020).

We use the Adam Optimizer with initial learning rate 0.0001, which is multiplied by 0.7

whenever perplexity on the validation set does not improve for three checkpoints as described

by Kim et al. (2019). When it does not improve for 8 checkpoints, we early stop the training.

Table 4 shows the comparison between training with the default transformer parameters

Parameter Default Low-Resource
encoder type transformer transformer
decoder type transformer transformer

position encoding true true
enc layers 6 3
dec layers 6 3
heads 8 8

hidden size 512 256
word vec size 512 256
transformer ff 2,048 2,048

dropout 0.1 0.3
attention dropout [0.1] [0.1]
label smoothing 0.1 0.1

batch size ∼ 25,000 tokens 2,048 tokens
vocabulary size 32,000 16,000
subword model BPE BPE

optimizer Adam Adam
β1 0.9 N/A
β2 0.98 0.998

warmup steps 4,000 6,000
decay method N/A noam

Table 4: Comparison of Default Transformer Parameters and Adjustments for Low-Resource
Scenarios

described in Kim et al. (2019) and Vaswani et al. (2017) versus the adjusted parameters

for low-resource scenarios as described above for 100k sentences between French (source)
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and German (target). We use the same low-resource parametrization for the different pivot

models. The training pipeline is built with the OpenNMT library38, which lets us explore

these different parameters based on configuration files. The OpenNMT library, similar to

the well known statistical machine translation system ”Moses”, provides functionality to

train transformer and other artificial neural networks, e.g., ”Image to Text”, ”Video to

Text” or ”Speech to Text” neural networks. To make use of the OpenNMT library, specific

requirements have to be met. As soon as the proper type of data is provided, we can call the

”onmt train” procedure, which in turn starts a neural network training loop based on the

pytorch39 library. The procedure is further guided by a configuration file which is an input

to the ”onmt train” script. In the configuration file, we define the paths for the target and

source files for training and validation data, as well as specific hyperparameters for training

such as the learning rate, type of optimization, number of warmup and training steps or early

stopping. With the help of the configuration file, we can further influence the architecture of

the transformer. E.g., we can set the number of attention heads to 6 instead of 8 or change the

dmodel size to 256 instead of 512. Consequently, running the experiments can be achieved by

specifying the respective configuration files. However, the data pre-processing is only partially

covered by OpenNMT. While the OpenNMT provides its own tokenization procedure we

opted to use the SentencePiece library by Google to build a BPE. The library implements a

industry-standard, fast BPE algorithm that creates both BPE model and vocabulary based

on a specific corpus. Google’s SentencePiece library, however, is only partially compatible

with OpenNMT. The vocabulary file which provides the transformer with input token ids has

to be either transformed with a compatibility script or built using the OpenNMT tooling. We

opted for relying on the OpenNMT tooling and the ”onmt build vocab” procedure to produce

a OpenNMT compatible vocabulary. It is noteworthy, that the token ids have to be updated

between steps 1 to 3. There may be various ways to achieve a similar feet, however, when

using the same transformer model file in the form of a checkpoint 40 to continue the training

for each consecutive step from, the OpenNMT implementation of the transformer internally

saves representation of the vocabulary. When switching between step 1, the training between

source and pivot, to step 2, the training between pivot and target, the token ids for the

target language are unknown to the transformer or worse, already occupied by subword

units from the source and pivot language leading to faulty trainings and results. To prevent

38OpenNMT Homepage https://opennmt.net/. Remark: On July the 4th2024, it was announced in
the OpenNMT community forum that the OpenNMT project is discontinued and instead eole (eole-
nlp.github.io/eole) is to be used

39PyTorch is an optimized tensor library for deep learning using GPUs and CPUs: https://pytorch.org/
40a save file in machine learning or deep learning is referred to as checkpoint

https://opennmt.net/
eole-nlp.github.io/eole
eole-nlp.github.io/eole
https://pytorch.org/
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overloading the token ids with multiple entries, we use the ”-update vocab” option provided

by the OpenNMT library.

Preparation of Datasets Datasets for the selected language pairs are acquired via https:

//opus.nlpl.eu/ (Opus), ensuring sufficient volume and quality for training, validation, and

testing. Opus contains about 1, 200 different corpora for different language pairs, from and to

German, from and to English, and from and to French, among others. The source (French)

to target (German) language pairing has 360, 890, 261 sentence pairs 41. The source-to-pivot

(English) language pairing has 1, 088, 160, 191 sentence pairs. The pivot to target language pair

has 898,280,702 sentence pairs. Those numbers are far from ”low-resource”. Neural Language

Translation is a data-hungry undertaking. A low-resource scenarios is typically classified as

such if the amount of parallel data in that particular translation scenario comprises fewer

than 100, 000 sentence pairs. Therefore, we constrain the source-target corpus to 100, 000

of randomly sampled pairs to artificially generate a low-resource scenario. We are going to

further compare results for 0 % (i.e., source-target baseline model), 50 %, 100 %, 200 %,

400 % and 800 % of 100, 000 for the size of the pivot corpus, allowing us to inspect changes

in translation quality with respect to the availability of pivot language pairings as described

in the previous section. We use the publicly available Europarl corpus 42 provided by Opus

to obtain high quality French, English and German parallel sentences. The data is cleaned to

remove missings, duplicates, and rows that were copied (i.e., an exact match or copy in source

and target corpus), and normalized for special characters and HTML sequences. Lastly,

we shuffle the sentences as oftentimes datasets come with sentence pairs sorted by length.

Afterwards, we split the data into training, validation (i.e., development) and testset, and

reserve 6,000 sentence pairs for validation and finally hold out 12,000 sentences for testing

the translation models. The validation set is used during the training of the different models.

While the training set is being processed, every 10,000 steps the OpenNMT procedure reports

on accuracy, cross-entropy and perplexity based on the validation set, where the current

state of the training is tasked to translate the source side of the validation set. The resulting

translation attempt is compared against the target side of the validation set.

1 def accuracy(self):

2 """ compute accuracy """

41Sentence Pair Data inquired on June 26, 2024
42The Europarl parallel corpus is extracted from the proceedings of the European Parliament. It includes

versions in 21 European languages: Romanic (French, Italian, Spanish, Portuguese, Romanian), Germanic
(English, Dutch, German, Danish, Swedish), Slavik (Bulgarian, Czech, Polish, Slovak, Slovene), Finni-Ugric
(Finnish, Hungarian, Estonian), Baltic (Latvian, Lithuanian), and Greek. (European Commission (last), 2011)

https://opus.nlpl.eu/
https://opus.nlpl.eu/
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3 return 100 * (self.n_correct / self.n_words)

4

5 def xent(self):

6 """ compute cross entropy """

7 return self.loss / self.n_words

8

9 def ppl(self):

10 """ compute perplexity """

11 return math.exp(min(self.loss / self.n_words , 100))

Listing 1: Validation Metric Calculation, Source: github/OpenNMT-py

In Listing 1, we illustrate the calculation steps for the accuracy, entropy (xent), and perplexity

(ppl) metric. The self Object is a Statistics class object that gets initialized in the trainer.py-

onmt procedure with the respective information n correct, i.e., the number of correctly

translated words, the current loss of the model that is being validated, and the total number

of words in the validation set. These calculations are conducted on batch-level, meaning,

since our validation batch size is 4, 096 tokens and we use 6, 000 sentences for validation

consisting of about 26 words on average per sentence, and with about 0.72 tokens per word,

we accumulate 55 batches over which the statistics are gathered. On that level, we are able

to get robust insights to performance metrics during the model training. After the training

is concludes, to finally evaluate the performance of the output model, in addition to our

holdout Europarl test set, we consult the BLEU Score on the WMT19 fr-de news translation

task test data, which was not used in training and furthermore has a slightly different overall

vocabulary than the Europarl (politics) vocabulary. We expect the models to perform slightly

worse on the out-of-training-domain vocabulary. To counteract an overfitting behaviour,

dropout rates on attention-head and feedforward level are set to 0.1 and 0.3, which aligns

with findings from (Lankford & Afli, 2021).

The BLEU-Score Using the BLEU-Score as a benchmark is a domain and industry stan-

dard. In July 2002 IBM’s research group led by Kishore Papineni introduced BLEU (acronym:

bilingual evaluation understudy) as a measure to algorithmically evaluate translations and

their quality (Papineni et al., 2001). In their study, the proposed BLEU procedure correlates

strongly (96% to 98%) with the judgment of both mono- and bi-lingual human judges (10

judges per group) when ranking proposed reference translations to a given source sentence.

Compared to human evaluation, the BLEU is fast and cheap. Noteworthy, in the paper

introducing BLEU, Papineni et al. assume their metric to be used for ranking different

translation outcomes to multiple reference translations. Papineni et al. discuss the use of a

single reference translation to be correct only under some circumstances:
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... we may use a big test corpus with a single reference translation, provided that

the translations are not all from the same translator. (Papineni et al., 2001)

Nevertheless, the BLEU metric has been adopted as the dominant metric for Machine

Translation research (Post, 2018). Different scientific groups have since criticized the

widespread use of BLEU and many alternatives have been proposed. However, the scoring

approach is used as a benchmark in virtually every research paper as it is a widely known,

simple to implement, fast, and common metric for comparison within domain-specific tasks.

Designed to be used for several reference translations, in practice it is used with only a single

reference translation since often large corpora contain bijective sentence pairs in source and

target language. The success of the BLEU score is polarizing. One of the most cited works

questioning, e.g., the correlation of BLEU with human judgments is the work by (Osborne &

Koehn, 2006) from 2006: “Re-evaluating the Role of BLEU in Machine Translation Research”

(Osborne & Koehn, 2006).

... BLEU is not sufficient to reflect a genuine improvement in translation quality,

and in other circumstances that it is not necessary to improve Bleu in order to

achieve a noticeable improvement in translation quality.

The authors claim that although BLEU has significant advantages, there is no guarantee

that an increase in BLEU score is an indicator of improved translation quality (Osborne &

Koehn, 2006).

The main principle behind BLEU is the measurement of the overlap in unigrams

(single words) and higher order n-grams of words, between a translation being

evaluated and a set of one or more reference translations. The main component of

BLEU is n-gram precision: the proportion of the matched n-grams out of the total

number of n-grams in the evaluated translation. Precision is calculated separately

for each n-gram order, and the precisions are combined via a geometric averaging.

BLEU does not take recall into account directly. Recall – the proportion of the

matched n-grams out of the total number of n-grams in the reference translation, is

extremely important for assessing the quality of MT output, as it reflects to what

degree the translation covers the entire content of the translated sentence. (Banerjee

& Lavie, 2005)

Banerjee & Lavie (2005) describe that BLEU does not use recall because the notion of recall

is unclear when matching against multiple references simultaneously. But in reality, BLEU is

rarely used with multiple references, so not considering recall is a weakness. Furthermore,
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BLEU is dependent on the tokenization technique, and scores achieved with different ones are

incomparable. The tokenization technique dependency is a common flaw among evaluation

metrics for natural language processing tasks. In order to improve reproducibility and

comparability, the SacreBLEU package was designed in 2018 by Matt Post, an Amazon

Researcher (Post, 2018) who himself attributes the idea to Rico Sennrich, Professor at the

University of Zurich working on natural language processing. SacreBLEU tries to solve the

problem of inconsistency in the reporting of BLEU scores (Post, 2018).

Although people refer to “the” BLEU score, BLEU is in fact a parameterized

metric whose values can vary wildly with changes to these parameters. These

parameters are often not reported or are hard to find, and consequently, BLEU

scores between papers cannot be directly compared.

SacreBLEU therefore is no derivative or next-generation metric, that replaces BLEU but an

extension to make working with the metric more consistent. On top of that, the SacreBLEU

library provides access to the Translation Error43 Rate (TER) metric and character n-gram

F-score (chrF).

The TER Metric The TER is defined as the minimum number of edits needed to change

a hypothesis (i.e., the predicted sequence) so that it exactly matches one of the references,

normalized by the average length of the references (Snover et al., 2006).

TER =
# of edits

average # of reference words
(33)

TER corresponds to post-editing effort.

Possible edits include the insertion, deletion, and substitution of single words as

well as shifts of word sequences. A shift moves a contiguous sequence of words

within the hypothesis to another location within the hypothesis. All edits, including

shifts of any number of words, by any distance, have equal cost. In addition,

punctuation tokens are treated as normal words and mis-capitalization is counted

as an edit. Snover et al. (2006)

The metric is straight forward and interpretable. In contrast to BLEU, a higher TER indicates

a worse translation result. A perfect fit between hypothesis and reference results in 0 edits,

43originally named Translation Edit Rate by Snover et al. (2006) but commonly referred to as Translation
Error Rate
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yielding a translation error rate of 0.

The chrF Metric The chrF proposed by Popović (2015), on the other hand, computes

chrF · β = (1 + β2)
chrP · chrR

β2 · chrP · chrR
(34)

where chrP and chrR stand for character n-gram precision and recall arithmetically averaged

over all n-grams.

• chrP: percentage of n-grams in the hypothesis

• chrR: which have a counterpart in the reference

• β: Parameter to scale the importance between recall and precision.

In contrast to BLEU, the computation is evaluated on character and not on word level, making

it more sensitive to smaller differences, such as word forms, spelling, and morphological

variations. Furthermore, in contrast to BLEU, chrF computes both precision and recall,

addressing a common flaw of the BLEU metric. However, as they operate on different levels,

they measure different aspects of translation quality. BLEU is more focused on word-level

matching and precision, with an emphasis on fluency and overall sentence structure, whereas

chrF focuses on character-level matching, balancing precision and recall, is more sensitive to

finer details like spelling and morphology. The two additional metrics, TER and chrF, are

common variants besides the BLEU metric which enable a broader comparability.
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5 Results

In the following chapter, we report on the results of our experiment. First, we conduct a

visual analysis of the training procedure and its results. A visual inspection provides insight

to the model’s learning dynamics, allowing us to identify trends, detect anomalies, and assess

the overall performance and convergence of the training process. After visually confirming the

plausibility of our experiment, we provide the translation quality results across the different

scenarios, followed by an excerpt of translation examples. We conclude in a comparison of

the translation qualities for the different scenarios.

5.1 Visual Analysis

To analyze the training procedure, we use Tensorboard44. Tensorboard is a visualization tool

for monitoring and debugging machine learning processes, providing interactive visualizations

of metrics such as, e.g., loss and accuracy during training and evaluation. To access this

information, Tensorboard provides a graphical user interface. Tensorboard is supported

by the OpenNMT lirbrary, natively. In the following paragraph, we describe findings and

observations during the training procedure of the models. In total, we trained 15 models45,

along with 2 baseline models. While it is unnecessary to visually inspect all 17 training

procedures, we focus on patterns and provide examples. The extensive log-files can be found

in the evaluation directory for further inspection.

Visual Analysis - Observations In Figure 22 we observe a variety of information. There

are distinct 3 graphs for the 3 stages in our experiment setup. The first (left to right)

sub-graph belongs to the language pair source-pivot (fr-en), the second to pivot-target (en-de),

and the third to source-target (fr-de). In the Table below, there are several metrics reported.

The initial and final training accuracy of the respective model (Min or Start Value and Max

or End Value), the absolute and relative change in accuracy (∆ Value, ∆ %), and finally,

the Start and End Step. Alongside the graphs, these metrics provide a meaningful insight

into the training procedure. The first sub-graph begins at step 10,000. In the training

configuration, we set the validation to run every 10,000 steps, so we observe the expected

behaviour. We also observe the training curves to generally increase during the training

procedure, indicating our loss function and architecture generally optimizes the model for

the training data. Interestingly, we observe gaps of 20,000 steps between stages 1 and 2

44Tensorboard: https://www.tensorflow.org/tensorboard
4515 models from 3 stages for 5 pivot resource levels

https://www.tensorflow.org/tensorboard
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and stages 2 and 3. We expect these jumps to be 10,000 steps wide. A training procedure

concludes in reporting its final parameters and by forming a step-specific checkpoint, that

reflects the training process up to that specific step. We observe a reporting at step 90,000,

and in our model files we find the corresponding ’model.fr-en step 90000.pt’, also. File

’model.fr-en step 90000.pt’ then serves as the starting point for training the en-de model.

During process, the pytorch optimizer (which is saved in the checkpoint alongside, e.g., the

model weights or the model architecture) preserves both learning rate and progression. We

expect the training procedure to continue from 90,000 steps, hence expect the first validation

procedure to occur after 10,000 steps at 100,000 steps. During training, however, an issue

occurred if the early stopping mechanism triggered. The training configuration involved an

early stopping mechanism that concluded the training as soon as for 8 consecutive validations

there is no meaningful improvement in perplexity. We expected the procedure to save the

models’ checkpoint at the early stopping. However, due to an pytorch memory allocation

error 46, that last checkpoint including its logging seems to be lost. That memory error

occurred consistently on early stopping in the other model training procedures but is negligible

since due to the nature of the mechanism there must have been either negative, or very small

to no changes in model quality for the last 8 steps anyway. We now shift our focus to the

Figure 22: Training Accuracy Graph, Pivot Resource Level: 200,000 Sentences

absolute training accuracy. To compare the metric between the three sub-graphs has little

46An error in cpython/Lib/multiprocessing/popen fork.py, resulting in 14 leaked semaphore objects to
clean up at manual shutdown, hinting at a deadlock during memory allocation in a low-level library during
runtime which we were not able to address. Further inspection revealed that the process tries to allocate
hundreds of Gigabytes of RAM for no apparent reason. The error only occurs when the checkpoint saving
procedure is initiated by early stopping.
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meaning. sub-graph 1 and 2 are intermediate steps enabling sub-graph 3. Worthy of note

in sub-graph 3 (fr-de) is the absolute training accuracy, which begins at 56.3 compared to

47.41 for fr-en and 43.3 for en-de. The high starting accuracy value could already hint to

the overall success of the pivot approach, putting the pivot model at advantage over the

non-pivot variant.

In Figure 23, we observe the declining learning rate during the training. The decline is

specified in the training config file and provided to the pytorch optimizer, which handles the

learning rate adjustments accordingly. In the training config, we used the ”adam” optimizer,

starting at a learning rate of 2 with 6000 warmup steps, a adam β2 of 0.998 with the ’noam’

decay method (Lukasz Kaiser, 2017). We observe, that the state of the optimizer persists

Figure 23: Learning Rate Graph, Pivot Resource Level: 200,000 Sentences

across training stages 1, 2 and 3. As expected, the jumps between the stages occur. At these

jumps, learning rates are not reset. We included the decaying mechanism described in Chapter

4, which should have let the learning rate decay on validation perplexity not improving over

three steps, but the behaviour can not be observed from the logging nor visually. Most likely,

our implementation of the decaying mechanism proposed by Kim et al. (2019) did not work

as intended and was overridden by the default ’adam’ optimizer’s behaviour. The learning

rate is a parameter to control the convergence and convergence speed of the training. Since

our training still shows steady improvement and seems to converge, we conclude the missing

mechanism to be negligible.
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In Figure 24, we can see the accuracy metric which was previously shown in Figure 22

but now for the validation data. As the validation data is not part of the neural network

optimization, we expect the metric to be lower than the training accuracy. Interestingly, the

Figure 24: Validation Accuracy Graph, Pivot Resource Level: 200,000 Sentences

pivot-target validation accuracy is higher than the pivot-target training accuracy. Usually,

a higher validation than training accuracy indicates data leakage, i.e., situations where to

model has access to data it should have no access to, or in simpler terms: the validation data

was part of the optimization procedure. However, we thoroughly checked the file paths in the

training configuration, the data splitting and selection process, and were not able to find any

issues. The behaviour is anomalous but did not occur in other resource levels besides 200,000

pivot sentence pairs. Besides the anomaly, we can observe that the validation accuracy overall

increases between stage 1 and stage 3 but decreases slightly between stage 2 and stage 3,

even decreasing between the start and end of stage 3. At this point, the learning rate is

decayed to 0.0002 (rounded), allowing only for small adjustments of the overall model. The

increasing training accuracy during the third phase, on the other hand, indicates adequacy of

the learning rate and overall model. Also, it is important to consider that the final stage

3 only sees 100,000 sentence pairs between source and target language to simulate the low

resource scenario. If we, on the other hand, take a look at Figure 25, we instead see a steady

improvement between stages. However, in this scenario, the additional resources amount only

to half of the fixed number of 100,000 source-target sentence pairs. The resulting improvement

in performance may be attributed to the larger amount of avaliable resources in the final

stage. On a neutral resource level as seen in figure 26, where pivot data and source-target
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Figure 25: Validation Accuracy Graph, Pivot Resource Level: 50,000 Sentences

Figure 26: Validation Accuracy Graph, Pivot Resource Level: 100,000 Sentences

data are available equally (100,000 sentence pairs), we even observe a decrease of validation

accuracy of −0.48 with overall little to no change to the model’s performance during the

source-pivot training phase. However, the observed behaviour, consistent improvement in

training accuracy, is similar to the 200,000 sentence scenario. Here we have to consider that it

is possible and likely that due to the limited amount of source target sentence pairs (100, 000),

the intermediate training between source to pivot or pivot to source is resulting in better

performing intermediate models on their validation data. That better performance is to be

expected and the discrepancy even stronger the larger the gap between the resources available

for training. The discrepancy between validation accuracy in stage 1 and 2 and validation

accuracy in stage 3 is displayed in 27.

To argue for or against the success of the pivot strategy, we have to inspect the perfor-
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Figure 27: Validation Accuracy Graph, Pivot Resource Level: 800,000 Sentences

mance of the plain source to target transformer model in which no pivot strategy was used.

With respect to the validation accuracy during training, we we can see in Figure 28, the

pivot strategy outperforms the baseline source to target transformer model. The validation

accuracy of the baseline strategy reaches 5.68 whereas the accuracy of the different pivot

strategies are about 10× that high. Not only is the validation accuracy outperformed by the

Figure 28: Validation Accuracy Graph, lower-bound Baseline Model

pivot strategies validation accuracy but the baseline validation accuracy does not stabilize or

increase, even after 90,000 training steps between 100,000 sentence pairs from source and

target language. The behaviour seems odd, however, the training accuracy shown in Figure

29 reveals that the baseline model is learning the transfer between source and target language
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sufficiently, i.e., the model is slowly but steadily optimizing. Noteworthy, the early stopping

Figure 29: Training Accuracy Graph, lower-bound Baseline Model

mechanism stops the training for the baseline model after 8 validation iterations (90,000

training steps), because the perplexity did increase instead of decreasing.

Finally, we report the training progress for the strong, upper-bound baseline model,

which was trained on source to target sentences provided in the WMT19 challenge. The

model’s parameter are set to the default parameters described in (Vaswani et al., 2017). Since

the WMT19 data situation is no low-resource scenario, the parameters do not have to be

adapted for such. The curve shown in Figure 30 reveals, that the transformer architecture

picks up on the optimization goal and is able to increase the accuracy on its validation data

up to 61.1 after 170,000 training iterations. Interestingly, the validation accuracy is about as

high as for the pivot strategies, which were trained on comparably small amounts of resource.

The visual analysis serves as an indicator but more reliable are the translation quality metrics.

5.2 Translation Quality

From our experiments, we obtain 7 trained models: lower-bound baseline (zero pivot resources,

i.e., naive source-target model), 50,000, 100,000, 200,000, 400,000 and 800,000 pivot sentence

pair models, and finally the strong baseline model which is trained on the WMT19 data. We

report BLEU, TER and chrF for the standardized WMT19 test-set aswell as for the hold out

testset based on the Europarl data. The results are shown in Table 5.

The leftmost column ”Pivot Resource” describes the amount of resources used, where 0
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Figure 30: Validation Accuracy Graph, upper-bound Baseline Model

Pivot Resource Europarl WMT19
BLEU chrF TER BLEU chrF TER

0 19.48 50.68 70.87 12.82 44.97 81.88
50k 20.97 52.25 69.00 15.09 48.04 77.84
100k 21.76 52.77 68.06 15.99 48.64 75.81
200k 22.09 53.22 67.74 16.38 49.20 75.94
400k 22.48 53.61 67.55 17.31 50.29 74.68
800k 22.29 53.39 67.54 16.95 49.84 74.85

WMT19 Baseline 27.85 57.92 62.17 24.19 56.46 66.10

Table 5: Translation Quality: BLEU, ChrF, and TER metrics for Europarl and WMT19 test
sets

corresponds to the naive strategy in which pivotting was not used, 50k corresponds to 50,000

sentence pairs between source to pivot and pivot to target language, and so on. The last row,

WMT19 Baseline, corresponds to the results of the model trained on the WMT19 data. The

columns ”Europarl” and ”WMT19” encapsulate three subcolumns for the translation quality

metrics BLEU, chrF and TER. The higher the BLEU and chrF score, the better. On the

contrary, the lower the TER (Translation Error Rate), the better. The best performing model

in each metric is indicated by a bold markup for each dataset. The WMT19 strong baseline,

however, is out of competition which is indicated by the two horizontal lines. The WMT19

strong baseline model outperforms every other model in each metric for each test set. It is no

strict rule nor proven that a model trained on less resources cannot surpass a model trained

on more resources. Nevertheless, the WMT19 strong baseline model is a heuristical soft upper
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bound and corresponds to ”what could potentially (at least) be achieved”. We observe various

other things from the translation quality table. First and foremost, the naive baseline model,

row ”0”, scores worst in each metric in both datasets. However, compared to the unstable,

small validation accuracy and seemingly faulty training procedure, as indicated by the visual

analysis, the translation quality metrics of the naive baseline are within reasonable range

of the other models which exploited additional data. Between the worse, row ”0”, and best

BLEU score, row ”400k”, there is a difference of +3 BLEU or a 15.4% improvement in BLEU

over naive baseline. The chrF differs 2.93 Points (+5.8% improvement over baseline), and the

TER shrinks 3.33 points from 70.87 to 67.54, which corresponds to a 4.7% improvement over

baseline. Vice versa, the pivot strategy outperforms the naive strategy in all pivot resource

scenarios. Noticeable, the model based on 400,000 pivot sentences in row ”400k” has the

highest score in 5 out of 6 comparisons, and is beat by the 800k pivot sentence pair model on

the Europarl test data in Translation Error Rate by −0.01 points, with values ranging from

70.87 (”0”) to 62.17 (WMT19 Baseline). In other words, the 800k model outperforms the

400k only by a margin while being trained on two times the resources. In general, there is a

trend noticeable where less resources indicate a worse performance in translation quality and

vice versa. Figure 31 illustrates the potential relation between the amount of pivot resources

and translation quality. The trend is apparent in all three translation quality metrics, BLEU,

chrF and TER. The trend saturates with higher resources. The graphs in Figure 31 and

Table 5 furthermore illustrate the discrepancy between in-domain and out-of-domain neural

machine translation training and its quality. The translation quality on the Europarl test set

is on average +5.76 BLEU points, +4.16 chrF points, and −8.37 TER points better than on

the WMT19 test set at the same level of resource.

5.3 Discussion

Based on our findings, we are going to discuss our research hypothesis that larger source-pivot

and pivot-target corpora result in better translation qualities. In other words: Does a relation

between translation quality and the amount of pivot resources exist. First and foremost,

our findings suggest that using the pivot strategy improves the translation quality over

not using a pivot strategy in low resource scenarios. Neural machine translation is a data

hungry endeavor, and in our experiments the baseline model, for which no pivot strategy is

used, is outperformed by the pivot approach that exploits additional language resources to

better satisfy the models need for data. As expected, the assumption that our pivot strategy

improves the translation quality seems to hold. The visual analysis of the training progress

for the naive baseline model shows that it is debatable whether a wrong configuration of the
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Figure 31: Relation between Resource Availability and Translation Quality

training and network led to the early stopping because of the unstable validation accuracy.

We base our configuration parameters on assumptions by Mhaskar & Bhattacharyya (2021),
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Kim et al. (2019), Araabi & Monz (2020), van Biljon et al. (2020), Lankford & Afli (2021),

and Vaswani et al. (2017) as described in Section Practical Considerations in Chapter 4 but

we cannot rule out implementation errors completely, such as the potential (but negligible)

failure in adapting the perplexity based learning rate decaying mechanism. From our visual

analysis we deduct that in general the training procedure for the naive baseline model picks up

on the optimization goal and shows steady improvement in accuracy on the training data. On

the other hand, the validation accuracy decreases. There are no mention worthy deviations

from the training pipeline used to train the models which include the pivot strategy. The pivot

strategy involves additional, more complex steps. The naive baseline model trains between

source and target model with 100,000 sentence pairs. In our pivot strategy, a model is trained

in 3 stages, firstly between source and pivot, secondly with a frozen encoder between pivot

and target, and finally between source and target. The validation accuracy varies between

the 3 stages but ends up being 10× higher than the validation accuracy of the baseline model

for every scenario. Realistically, the zero pivot resource baseline model should not fail to that

extend during training, hence we conclude that our comparison is apparent in nature but

questionable. The deduction that our pivot approach improves the translation quality over the

lower-bound baseline may be exaggerated by comparing them to a potentially mis-configured

lower-bound baseline. On the other hand and to our surprise, the translation quality metrics

suggest that even though the validation accuracy for the naive baseline model is just 5− 6%

compared to 50− 60% for the pivot strategy validation accuracies, the discrepancy between

translation capabilities is not as high (+15.4% BLEU, +5.8% chrF, and −4.7% TER over

naive baseline versus ∼ 1, 000% increased validation accuracy over naive baseline). However,

we also hypothesised the strong baseline model which was trained on the WMT19 data to

be an strong, upper-bound baseline. The WMT19 data consists out of 10 million sentence

pairs which is 100× the amount of our source to target resources (100,000 sentence pairs).

In other words, in our pivot experiment we use 1% of source-target resource sentence pairs

while exploiting the effect of 0%, 0.5%, 1%, 2%, 4% and 8% additional pivot resources in

comparison to the strong, upper bound model. Our experiment suggests, that while there is a

large discrepancy between the availability of data the discrepancy between translation quality

is not that big. E.g., the overall best performing model with 400,000 pivot sentence pairs

achieves with 1% source-target+4% pivot of data 80.72% of the potential strong, upper bound

baseline of 27.85 BLEU points on the Europarl test set and 70.01% of the potential 24.19

BLEU points on the WMT19 test set. In general, the translation quality on the Europarl

test set is on average +5.76 BLEU points, +4.16 chrF points, and −8.37 TER points better

than on the WMT19 test set at the same level of resource. The discrepancy is expected,

since all models besides the WMT19 baseline model are trained exclusively on the Europarl
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dataset, which contains specific vocabulary and topics, primarily in the domain of politics.

The WMT19 data, however, consists of multiple data sources as described in Chapter 4.

One of the four sources for the WMT19 data is a Europarl-v7 corpus consisting of 1,726,419

sentence pairs, 18.00% of the total 9,589,357 WMT19 fr-de sentence pairs. Arguably, a

portion of the translation quality metrics is overestimated because there may be similarities

in the vocabularies between training and test data even though a seemingly unrelated and

”industry standard” benchmark test set was used. In general, the WMT19 translation quality

results are the more robust results as they generalize to the other 82.00% of the WMT19

data, which are not necessarily topics revolving around politics but news and other crawled

online resources. Vice versa, the translation quality metrics for the Europarl test set are

overestimated and overfit to the specific domain of european politics. Finally, we address the

question whether larger source-pivot and pivot-target corpora result in better translation

qualities. So far we have concluded that a pivot strategy generally leads to better translation

quality. The trend shown in Table 5 and Figure 31 point towards a relation between pivot

resource availability and translation quality. The trend, however, seems to saturate at around

400,000 sentence pairs, where no noteworthy improvement takes place when again doubling

the amount of pivot resources. The curves of improvement for the different quality metrics as

illustrated in 31 are evident of this observation. We emphasize, however, that the breaking

point of 400,000 sentences is vague and also strictly connected to the low-resource scenario

setting of 100,000 source to target sentences. Other experiments with different amounts of

available resource may find other points of diminishing returns but our findings suggest that

using a pivot strategy in low resource scenarios with 3to5× the amount of source-pivot and

pivot-target data yields the best results and trying to exploit further additional data only

yields little to no improvements.

Comparison to Related Research We describe (Kim et al., 2019) as influential to our

work. In their paper, Kim et al. (2019) report the following metrics:

In Figure 32 we find a table that reports on the BLEU and TER for specific approaches.

Their parallel fr-de corpus consists of 35,000,000 sentence pairs, their pivot en-de of 9,100,000

sentence pairs, and their source to target fr-de corpus of 270,000 sentence pairs. In their exper-

iment, they are not specifically examining low-resource scenarios, however, when comparing

our results to theirs we find similarities. The first row, ”Direct source → target”, corresponds

to our naive baseline model in which no pivoting strategy is used. The fourth row, ”Plain

Transfer”, corresponds to the pivot strategy utilized in our approach. Kim et al. report

their metrics on two testsets, ”newstest2012” and ”newstest2013”, while using the ”News

Commentary v14” data as training material for their models. As discussed, using a specific
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Figure 32: Models fine-tuned with source-target parallel data. Source: (Kim et al., 2019,
Table 2),

domain (e.g., topics, vocabulary) for training and testing may lead to an overestimation of

translation quality metrics. In our results, that kind of overestimation is potentially embedded

within the quality assertion for the Europarl testset. On the other hand, we report on a

second, industry benchmark test set, which is in parts out-of-domain. Our results are therefor

more robust compared to (Kim et al., 2019) or at least address the issue of in-domain and

out-of-domain training and test scenarios. This robustness, however, typically comes at the

cost of better translation quality metrics. Hence, averaging our results between Europarl and

WMT19 compared to Kim et al.’s results does not seem far fetched. With a BLEU score of

19.48 and 12.82 for our plain naive model compared to their BLEU scores of 14.8 and 16.0

for their direct source to target model, we on average achieve a competitive result of 16.15

BLEU. Not using the exact same training configuration and artificial neural network setting

may lead to vastly different results. Our configuration specifically addresses concerns with

respect to low resource scenarios. These concerns may given our models an overall advantage

above Kim et al. when trained and tested on in-domain data. Comparing the additional gain

through the pivoting strategy within the same frame of reference (i.e., testset), we find a

18% and 16.9% increase in BLEU score over baseline from their results, which is close to our

15.4% BLEU score improvement of our 400k pivot model above baseline for the Europarl

testset. The improvement of 35.02% of BLEU score above naive baseline from 12.82 to 17.31

BLEU points for our 400k pivot model is somewhat of an outlier that can be explained by

the overall bad performance and missing robustness of our naive baseline line model on the

WMT19 test data. Also, their baseline TER of 75.1% for newstest2012 and newstest2013
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matches our average TER of 76.38% (Europarl and WMT19) for the naive baseline scenario.

Their improvements due to their plain transfer pivot strategy result in a relative decrease in

TER of 3.87% for newstest2012 and 4.6% for newstest2013 which are close to our 4.91% on

Europarl and 9.64% WMT19, with the WMT19 improvement again seeming strong because

of the initial weak baseline. Overall, the results are within reasonable range of reference

even though Kim et al. (2019) did not specifically construct a low-resource scenario for their

experiments.
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6 Conclusion

Revisiting the Motivation In our motivation for the thesis in Chapter 1, we describe

neural machine translation as the starting point for large language technology and set out to

explore the technology by learning about its predecessor: Neural Machine Translation. We

revisited the past of neural machine translation in Chapter 2 and learned about the theoretical

streams with respect to low resource machine translation. By providing a general intuition of

the concepts of artificial neural networks in Section 3.1, insights into the intricacies of artificial

neural networks in Chapter 3.1, sequence-to-sequence recurrent neural networks in Section

3.2.2, and the transformer architecture especially in Section 3.2.3, we unlocked the necessary

components which allowed us to understand and build our own neural translation machine

translation system for our experiment which we described in Chapter 4. With the help of

the OpenNMT-Library and pytorch, we succesfully trained a reasonably capable translation

model for translating between French and German, and were able to provide evidence for

a saturating relation between the amount of pivot resources and translation quality which

we showed in Chapter 5. In our motivation, we linked neural machine translation to large

language models. Unlike traditional Neural Machine Translation (NMT) models, which are

specifically designed to translate text from one language to another, LLMs operate with a

different approach. LLMs are typically trained as self-supervised learners using techniques

such as masked language modeling, where portions of a sentence are masked, and the model

is trained to predict the missing words or sequences. This training method allows LLMs to

learn rich representations of language and context across a broad range of tasks, including

but not limited to text generation, question answering, and summarization based on vast

amounts of training material. While NMT models focus on mapping between source and

target languages to produce translations, LLMs generate text based on patterns learned from

extensive datasets. Despite this difference, both types of model leverage similar underlying

architectures and principles, such as the transformer which we explored in our thesis. With

the help of our introduction to neural machine translation using the transformer architecture

in Section 3.2, we are now able to grasp the general concept of LLMs and furthermore are

able to connect new topics with respect to important existing concepts and components,

including details such as the context vector c which was introduced in the context of RNNs

in Section 3.2.2 which was evolved into the concept of attention heads in the Transformer

introduced in Section 3.2.3.

Conclusion of the Experiment and its Results Additionally, our research successfully

demonstrates the effectiveness of using a pivot-based approach in low-resource neural machine
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translation. Through both visual and quantitative analyses, we observe that increasing the

size of source-pivot and pivot-target corpora results in consistently improved translation

quality. Models trained with the pivot strategy significantly outperform the baseline model,

which uses no pivoting, particularly in low-resource scenarios. The best-performing pivot

model, trained on 400,000 pivot sentences, showed an improvement of approximately 15.4%

in BLEU, 5.8% in chrF, and 4.7% in TER over the naive baseline, and reached between

70.01% to 80.72% of the potential assumed best case scenario with only 1% of sentence pairs

between source and target language while exploiting only 4% of additional pivot sentence pairs

compared to the 10,000,000 sentence pair WMT19 baseline model. The results implicate great

potential for finding trade-off points for diminishing returns. Moreover, the visual analysis

of the training process indicates stable learning dynamics, though we encountered some

anomalies, such as discrepancies in validation accuracy and potentially process-inhibiting

training interruptions due to an strict early stopping mechanism. Despite these minor issues,

the overall convergence and performance trends confirmed the robustness of our experiment

configuration. Our results suggest a clear relation between the availability of pivot resources

and the quality of translations, with a saturation point emerging as the size of the pivot

corpus increases. Additionally, the performance gap between in-domain (Europarl) and

out-of-domain (WMT19) test sets further highlights the importance of domain-specific data

in achieving optimal translation results, and emphasize the importance of mindfully selecting

training and evaluation corpora, potentially addressing conflicting aspects during analyses.

In conclusion, our experiment and findings support the hypothesis that using pivot strategies

in low-resource neural machine translation enhances translation quality, particularly when

leveraging a specific factor of additional language resources. While during our research of

existing material on the matter we came across experiments varying different parameters,

such as architecture configuration or the optimal choice of pivot language, we did not come

across an attempt to exclusively vary the level of available pivot resources. It might be

seemingly obvious and one might argue ”more is always better”, but there are reasons, e.g.,

the limited availability of data or computational resources, why carefully planned compliance

with constraints is beneficial over ”aimlessly enlarging each and every configuration parameter,

because one can”. We add the amount of pivot resources to the list of potentially beneficial

parameters to the quality of neural machine translation models when carefully formulated.

Outlook Our results support our hypothesis and a relation between pivot data availability

and translation quality, however, the amount of evidence is limited and based on one language

pair. By extending the number of language pairings, we could further solidify our hypothesis,

and by varying not only the amount of pivot resources but also the amount of source to
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target sentence pairs, specific points of diminishing returns can potentially be unraveled.

A heuristic based on strong, potentially statistical evidence, such as ”3to5× as much pivot

data as source to target data for optimal results using pivoting strategies”, could reveal

itself, providing a road mark for further research endeavors. Road markings and heuristics

such as these are substantial for researchers as they allow for great savings in time and

effort. With a carefully planned grid of language pairs, models, and their evaluation, our

hypothesis does not seem far fetched - on the contrary, our evidence already provides the

reasonable insight that is needed to formulate consecutive studies on the matter. However,

the models themselves are far from optimized. Although in comparison to the other models

trained within the same experimental framework, our hypothesis holds, the same might not

necessarily be true when training models on far more optimized configurations. These far

more optimized configurations are either achievable by extending research in the domain

of low resource language translation or gaining more hands-on experience on the matter.

In general, the thesis served as a great framework to gain that hands-on experience, and

while bumping into difficulties here and there, the author is now overflowing with ideas for

improvements to the experiment design and new sections for thesis script. Neural Machine

Translation and the technology revolving around large language models is complex, yet an

exciting field of research to get lost in.



97

7 General Addenda

7.1 Mathematical Notation

Vectors if not obvious are for clarity indicated as x⃗ and are assumed to be column vectors. If

obvious, x⃗ is simplified to just x. Matrices A are uppercase bold roman letters. The transpose

of a mathematical object is denoted by a superscript T, e.g., MT or xT . (w1, . . . , wN ) denotes

a row vector with N elements, respectively (w1, . . . , wN )
T a column vector. Indices are written

in subscript with i, j for column and row. Superscript (i), like M(1) denotes the layer position

in an artificial neural network setting. Subscripts (i), such as h(3)) denote the time stept of a

time-dependent process. We adopt common statistical notation, e.g., x̂ is an estimation for x,

and x ∼ p(x) means x is a sample from distribution p(x). θ are (vector of) parameters, usually

in context of estimations. θ is also a common symbol for threshold values. The difference

will be obvious given the context. For identically distributed (i.d.d) x⃗1, . . . , x⃗N ∼ p(x), where

x⃗i is a D-Dimensional the column vector the notation X is used and represents a matrix

of X ∼ p(x) of dimension N × D. When we speak about x•,j, we mean the j-th column

vector of X, the j-th feature of a data matrix. When we speak of xi,•, we mean the i-th row

vector of X, in other words, the i-th observation of a data matrix. The sets of numbers are

written in R whereas sets in general are upper-case letters M . Where needed, matrices (and

row/column vectors respectively) will be written out as
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann



7.2 Source Code and GitHub

The thesis’ code can be inspected under git@github.com:thejonnyt/nmt-pivot-strat.git.

Primarily, bash and python were used to conduct the experiments. To run the experiments on

a device, the docker environment has to be initialized. The Dockerfile lists all the necessary

installs and sets up a sufficient environment. From within the Docker environment one has to

call the run.sh script. Due to the error described in 5, the runtime is likely to crash during

operation, leading to the memory allocation error, which has no consequence as the program

stops at that point anyway. However, the error prevents the program to be written as a loop,

looping through the different experiment sizes (0, 50, 100, 200, and 800), resulting in manual

labour: after each training, the bash variables have to be adjusted accordingly, and the script

git@github.com:thejonnyt/nmt-pivot-strat.git
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has to be manually resumed at the next stage (e.g., after finishing the source to pivot training,

the pivot to target training has to be started manually). First, the run.sh procedure will

attempt to download the language pairs. The code produces a new, shared folder, local:nmt-

experiment or within-docker: share, in which the script’s progress and results under data

reside. With the help of the OpenNMT script onmt translate and the compute metrics.py

script, which primarily wraps the sacrebleu library, the models can be evaluated. Feel free to

contact the author of the thesis and its experiment via jonnytauscher@gmail.com (or, e.g.,

researchgate) for additional instructions if needed.
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angegebenen Quellen und Hilfsmittel angefertigt habe, insbesondere sind wörtliche oder
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